# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# TODO: Address all TODOs and remove all explanatory comments | |
"""OntoLAMA Dataset Loading Script""" | |
import csv | |
import json | |
import os | |
import datasets | |
# TODO: Add BibTeX citation | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_CITATION = """\ | |
@article{he2023language, | |
title={Language Model Analysis for Ontology Subsumption Inference}, | |
author={He, Yuan and Chen, Jiaoyan and Jim{\'e}nez-Ruiz, Ernesto and Dong, Hang and Horrocks, Ian}, | |
journal={arXiv preprint arXiv:2302.06761}, | |
year={2023} | |
} | |
""" | |
# TODO: Add description of the dataset here | |
# You can copy an official description | |
_DESCRIPTION = """\ | |
OntoLAMA: LAnguage Model Analysis datasets for Ontology Subsumption Inference. | |
""" | |
_URL = "https://huggingface.co/datasets/krr-oxford/OntoLAMA/resolve/main/data/" | |
# TODO: Add a link to an official homepage for the dataset here | |
_HOMEPAGE = "https://krr-oxford.github.io/DeepOnto/" | |
# TODO: Add the licence for the dataset here if you can find it | |
_LICENSE = "Apache License, Version 2.0" | |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case | |
class OntoLAMA(datasets.GeneratorBasedBuilder): | |
"""TODO: Short description of my dataset. | |
""" | |
VERSION = datasets.Version("1.0") | |
# This is an example of a dataset with multiple configurations. | |
# If you don't want/need to define several sub-sets in your dataset, | |
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. | |
# If you need to make complex sub-parts in the datasets with configurable options | |
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig | |
# BUILDER_CONFIG_CLASS = MyBuilderConfig | |
# You will be able to load one or the other configurations in the following list with | |
# data = datasets.load_dataset('my_dataset', 'first_domain') | |
# data = datasets.load_dataset('my_dataset', 'second_domain') | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="schemaorg-atomic-SI", | |
version=VERSION, | |
description="Atomic SI dataset created from the Schema.org Ontology." | |
), | |
datasets.BuilderConfig( | |
name="doid-atomic-SI", | |
version=VERSION, | |
description="Atomic SI dataset created from the Disease Ontology." | |
), | |
datasets.BuilderConfig( | |
name="foodon-atomic-SI", | |
version=VERSION, | |
description="Atomic SI dataset created from the Food Ontology." | |
), | |
datasets.BuilderConfig( | |
name="go-atomic-SI", | |
version=VERSION, | |
description="Atomic SI dataset created from Gene Ontology." | |
), | |
] | |
def _info(self): | |
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset | |
if "atomic-SI" in self.config.name: # This is the name of the configuration selected in BUILDER_CONFIGS above | |
features = datasets.Features( | |
{ | |
"v_sub_concept": datasets.Value("string"), | |
"v_super_concept": datasets.Value("string"), | |
'label': datasets.ClassLabel(num_classes=2, names=['negative_subsumption', 'positive_subsumption'], names_file=None, id=None), | |
"axiom": datasets.Value("string"), | |
# These are the features of your dataset like images, labels ... | |
} | |
) | |
elif "complex-SI" in self.config.name: # This is an example to show how to have different features for "first_domain" and "second_domain" | |
features = datasets.Features( | |
{ | |
"v_sub_concept": datasets.Value("string"), | |
"v_super_concept": datasets.Value("string"), | |
'label': datasets.ClassLabel(num_classes=2, names=['negative_subsumption', 'positive_subsumption'], names_file=None, id=None), | |
"axiom": datasets.Value("string"), | |
"anchor_axiom": datasets.Value("string") # the equivalence axiom used as anchor | |
# These are the features of your dataset like images, labels ... | |
} | |
) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and | |
# specify them. They'll be used if as_supervised=True in builder.as_dataset. | |
# supervised_keys=("sentence", "label"), | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration | |
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS | |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. | |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive | |
urls = os.path.join(_URL, self.config.name) | |
data_dir = dl_manager.download_and_extract(urls) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, "train.jsonl"), | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, "dev.jsonl"), | |
"split": "dev", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, "test.jsonl"), | |
"split": "test" | |
}, | |
), | |
] | |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
def _generate_examples(self, filepath, split): | |
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. | |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. | |
with open(filepath, encoding="utf-8") as f: | |
for key, row in enumerate(f): | |
data = json.loads(row) | |
if "atomic-SI" in self.config.name: | |
# Yields examples as (key, example) tuples | |
yield key, { | |
"v_sub_concept": data["v_sub_concept"], | |
"v_super_concept": data["v_super_concept"], | |
"label": data["label"], | |
"axiom": data["axiom"], | |
} | |
elif "complex-SI" in self.config.name: | |
yield key, { | |
"v_sub_concept": data["v_sub_concept"], | |
"v_super_concept": data["v_super_concept"], | |
"label": data["label"], | |
"axiom": data["axiom"], | |
"anchor_axiom": data["anchor_axiom"], | |
} | |