File size: 1,835 Bytes
5d9f773
 
 
 
 
 
 
 
 
 
 
e315104
5d9f773
 
e315104
5d9f773
 
 
 
 
e315104
 
 
 
 
 
 
 
5d9f773
e315104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
dataset_info:
  features:
  - name: messages
    list:
    - name: content
      dtype: string
    - name: role
      dtype: string
  splits:
  - name: train
    num_bytes: 15740872
    num_examples: 2208
  download_size: 7341426
  dataset_size: 15740872
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
task_categories:
- text-generation
- text2text-generation
- question-answering
language:
- en
size_categories:
- 1K<n<10K
---


## Description

The dataset is from [medalpaca/medical_meadow_mediqa](https://huggingface.co/datasets/medalpaca/medical_meadow_mediqa), formatted as dialogues for speed and ease of use. Many thanks to author for releasing it.
Importantly, this format is easy to use via the default chat template of `transformers`, meaning you can use [huggingface/alignment-handbook](https://github.com/huggingface/alignment-handbook) immediately, [unsloth](https://github.com/unslothai/unsloth).

## Structure

*View online through viewer.*

## Note

We advise you to reconsider before use, thank you. If you find it useful, please like and follow this account.

## Reference

The **Ghost X** was developed with the goal of researching and developing artificial intelligence useful to humans.

- HuggingFace: [ghost-x](https://huggingface.co/ghost-x)
- Github: [ghost-x-ai](https://github.com/ghost-x-ai)
- X / Twitter: [ghostx_ai](https://twitter.com/ghostx_ai)
- Website: [ghost-x.org](https://ghost-x.org/)

## Citation

```json
@article{savery2020question,
  title={Question-driven summarization of answers to consumer health questions},
  author={Savery, Max and Abacha, Asma Ben and Gayen, Soumya and Demner-Fushman, Dina},
  journal={Scientific Data},
  volume={7},
  number={1},
  pages={322},
  year={2020},
  publisher={Nature Publishing Group UK London}
}
```

### ~