Datasets:
Tasks:
Text Classification
Formats:
text
Languages:
Karo (Brazil)
Size:
10K - 100K
Tags:
driving
License:
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,79 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- arr
|
5 |
+
pretty_name: TrackMania Text
|
6 |
+
size_categories:
|
7 |
+
- 1M<n<10M
|
8 |
+
tags:
|
9 |
+
- driving
|
10 |
+
task_categories:
|
11 |
+
- text-classification
|
12 |
---
|
13 |
+
|
14 |
+
# tracktext
|
15 |
+
|
16 |
+
An experimental dataset that contains 128x64 greyscale images of TrackMania gameplay + keystrokes, designed for LLMs with 16k context or above.
|
17 |
+
|
18 |
+
Inspired by DOOM-Mistral-7b :)
|
19 |
+
|
20 |
+
## Dataset Details
|
21 |
+
|
22 |
+
Format:
|
23 |
+
```
|
24 |
+
{data}
|
25 |
+
[0.0, 0.0, 0.0, 0.0],
|
26 |
+
[0.0, 0.0, 0.0, 0.0],
|
27 |
+
...
|
28 |
+
{action}
|
29 |
+
[0, 0, 0, 0]
|
30 |
+
```
|
31 |
+
|
32 |
+
Greyscale Precision: 1 decimal
|
33 |
+
Capture rate: 6 frames per second
|
34 |
+
|
35 |
+
### Dataset Description
|
36 |
+
|
37 |
+
- **Curated by:** leafspark
|
38 |
+
- **Language(s) (NLP):** Numbers
|
39 |
+
- **License:** apache-2.0
|
40 |
+
|
41 |
+
## Uses
|
42 |
+
|
43 |
+
To train an LLM how to play TrackMania.
|
44 |
+
|
45 |
+
### Direct Use
|
46 |
+
|
47 |
+
Specialized LLM
|
48 |
+
|
49 |
+
### Out-of-Scope Use
|
50 |
+
|
51 |
+
Any regular LLM
|
52 |
+
|
53 |
+
## Dataset Structure
|
54 |
+
|
55 |
+
Text files
|
56 |
+
|
57 |
+
## Dataset Creation
|
58 |
+
|
59 |
+
Python script in repo
|
60 |
+
|
61 |
+
### Curation Rationale
|
62 |
+
|
63 |
+
Self driving using an LLM? For fun
|
64 |
+
|
65 |
+
### Source Data
|
66 |
+
|
67 |
+
TrackMania 2020 screengrabs
|
68 |
+
|
69 |
+
#### Personal and Sensitive Information
|
70 |
+
|
71 |
+
None
|
72 |
+
|
73 |
+
## Bias, Risks, and Limitations
|
74 |
+
|
75 |
+
The resolution is not very high; there may be suboptimal results
|
76 |
+
|
77 |
+
### Recommendations
|
78 |
+
|
79 |
+
Don't expect anything good
|