datasetId
stringlengths 5
121
| author
stringlengths 2
42
| last_modified
unknown | downloads
int64 0
2.47M
| likes
int64 0
7k
| tags
sequencelengths 1
7.92k
| task_categories
sequencelengths 0
47
⌀ | createdAt
unknown | card
stringlengths 15
1.01M
|
---|---|---|---|---|---|---|---|---|
Lots-of-LoRAs/task860_prost_mcq_generation | Lots-of-LoRAs | "2025-01-02T14:46:35Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-02T14:46:34Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task860_prost_mcq_generation
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 163
- name: valid
num_examples: 20
- name: test
num_examples: 21
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task860_prost_mcq_generation
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task342_winomt_classification_profession_pro | Lots-of-LoRAs | "2025-01-02T14:47:02Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-02T14:47:00Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task342_winomt_classification_profession_pro
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 1261
- name: valid
num_examples: 158
- name: test
num_examples: 158
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task342_winomt_classification_profession_pro
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task1677_xquad-ca_translation | Lots-of-LoRAs | "2025-01-02T14:47:45Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-02T14:47:43Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task1677_xquad-ca_translation
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 944
- name: valid
num_examples: 118
- name: test
num_examples: 118
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task1677_xquad-ca_translation
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task1340_msr_text_compression_compression | Lots-of-LoRAs | "2025-01-02T14:48:07Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-02T14:48:05Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task1340_msr_text_compression_compression
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 3947
- name: valid
num_examples: 493
- name: test
num_examples: 494
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task1340_msr_text_compression_compression
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task559_alt_translation_en_fi | Lots-of-LoRAs | "2025-01-02T14:48:28Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-02T14:48:26Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task559_alt_translation_en_fi
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 480
- name: valid
num_examples: 60
- name: test
num_examples: 60
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task559_alt_translation_en_fi
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task1193_food_course_classification | Lots-of-LoRAs | "2025-01-02T14:48:49Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-02T14:48:47Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task1193_food_course_classification
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 176
- name: valid
num_examples: 22
- name: test
num_examples: 22
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task1193_food_course_classification
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task483_cls_french_dvd_classification | Lots-of-LoRAs | "2025-01-02T14:50:31Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-02T14:50:29Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task483_cls_french_dvd_classification
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 1574
- name: valid
num_examples: 197
- name: test
num_examples: 197
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task483_cls_french_dvd_classification
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task1619_menyo20k-mt_en_yo_translation | Lots-of-LoRAs | "2025-01-02T14:52:28Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-02T14:52:26Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task1619_menyo20k-mt_en_yo_translation
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 3180
- name: valid
num_examples: 397
- name: test
num_examples: 398
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task1619_menyo20k-mt_en_yo_translation
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task658_tep_en_fa_translation | Lots-of-LoRAs | "2025-01-02T14:52:49Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-02T14:52:47Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task658_tep_en_fa_translation
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 5195
- name: valid
num_examples: 649
- name: test
num_examples: 650
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task658_tep_en_fa_translation
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task1360_numer_sense_multiple_choice_qa_generation | Lots-of-LoRAs | "2025-01-02T14:54:04Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-02T14:54:01Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task1360_numer_sense_multiple_choice_qa_generation
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 4985
- name: valid
num_examples: 623
- name: test
num_examples: 624
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task1360_numer_sense_multiple_choice_qa_generation
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task1144_xcsr_sw_commonsense_mc_classification | Lots-of-LoRAs | "2025-01-02T14:54:27Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-02T14:54:24Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task1144_xcsr_sw_commonsense_mc_classification
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 794
- name: valid
num_examples: 99
- name: test
num_examples: 100
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task1144_xcsr_sw_commonsense_mc_classification
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task1371_newscomm_translation | Lots-of-LoRAs | "2025-01-02T14:54:51Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-02T14:54:49Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task1371_newscomm_translation
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 1596
- name: valid
num_examples: 200
- name: test
num_examples: 200
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task1371_newscomm_translation
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task156_codah_classification_adversarial | Lots-of-LoRAs | "2025-01-02T14:55:15Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-02T14:55:13Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task156_codah_classification_adversarial
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 2216
- name: valid
num_examples: 277
- name: test
num_examples: 278
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task156_codah_classification_adversarial
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task315_europarl_sv-en_language_identification | Lots-of-LoRAs | "2025-01-02T14:55:37Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-02T14:55:35Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task315_europarl_sv-en_language_identification
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 5199
- name: valid
num_examples: 650
- name: test
num_examples: 650
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task315_europarl_sv-en_language_identification
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task798_pawsx_spanish_german_translation | Lots-of-LoRAs | "2025-01-02T14:55:58Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-02T14:55:56Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task798_pawsx_spanish_german_translation
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 199
- name: valid
num_examples: 25
- name: test
num_examples: 25
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task798_pawsx_spanish_german_translation
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task111_asset_sentence_simplification | Lots-of-LoRAs | "2025-01-02T14:56:29Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-02T14:56:27Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task111_asset_sentence_simplification
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 1600
- name: valid
num_examples: 200
- name: test
num_examples: 200
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task111_asset_sentence_simplification
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task227_clariq_classification | Lots-of-LoRAs | "2025-01-02T14:56:55Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-02T14:56:52Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task227_clariq_classification
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 5200
- name: valid
num_examples: 650
- name: test
num_examples: 650
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task227_clariq_classification
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task1395_europa_ecdc_tm_en_sv_translation | Lots-of-LoRAs | "2025-01-02T14:58:46Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-02T14:58:44Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task1395_europa_ecdc_tm_en_sv_translation
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 1938
- name: valid
num_examples: 242
- name: test
num_examples: 243
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task1395_europa_ecdc_tm_en_sv_translation
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task1488_sarcasmdetection_headline_classification | Lots-of-LoRAs | "2025-01-02T14:59:28Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-02T14:59:26Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task1488_sarcasmdetection_headline_classification
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 403
- name: valid
num_examples: 50
- name: test
num_examples: 51
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task1488_sarcasmdetection_headline_classification
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task392_inverse_causal_relationship | Lots-of-LoRAs | "2025-01-02T14:59:49Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-02T14:59:48Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task392_inverse_causal_relationship
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 2082
- name: valid
num_examples: 260
- name: test
num_examples: 261
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task392_inverse_causal_relationship
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task1119_alt_fil_ja_translation | Lots-of-LoRAs | "2025-01-02T15:00:13Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-02T15:00:11Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task1119_alt_fil_ja_translation
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 5197
- name: valid
num_examples: 650
- name: test
num_examples: 650
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task1119_alt_fil_ja_translation
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task1079_pib_translation_english_gujarati | Lots-of-LoRAs | "2025-01-02T15:01:49Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-02T15:01:47Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task1079_pib_translation_english_gujarati
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 1196
- name: valid
num_examples: 150
- name: test
num_examples: 150
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task1079_pib_translation_english_gujarati
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task521_trivia_question_classification | Lots-of-LoRAs | "2025-01-02T15:03:48Z" | 28 | 1 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-02T15:03:46Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task521_trivia_question_classification
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 5193
- name: valid
num_examples: 649
- name: test
num_examples: 650
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task521_trivia_question_classification
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
paulsxb/luxun-llama3-tt | paulsxb | "2025-01-02T15:15:30Z" | 28 | 0 | [
"license:apache-2.0",
"size_categories:n<1K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-02T15:14:12Z" | ---
license: apache-2.0
---
|
penfever/allenai_WildChat-1M-Full-Qwen_Qwen2.5-72B-Instruct-lc | penfever | "2025-01-02T15:38:13Z" | 28 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-02T15:36:45Z" | ---
dataset_info:
features:
- name: conversation_hash
dtype: string
- name: conversation
list:
- name: content
dtype: string
- name: content_token_ids
dtype: 'null'
- name: country
dtype: 'null'
- name: cumulative_logprob
dtype: 'null'
- name: finish_reason
dtype: string
- name: hashed_ip
dtype: string
- name: header
dtype: 'null'
- name: language
dtype: 'null'
- name: redacted
dtype: 'null'
- name: role
dtype: string
- name: state
dtype: 'null'
- name: timestamp
dtype: 'null'
- name: toxic
dtype: bool
- name: turn_identifier
dtype: 'null'
- name: model
dtype: string
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 6694409099
num_examples: 806219
download_size: 3282606144
dataset_size: 6694409099
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
yobro4619/sample_dataset | yobro4619 | "2025-01-02T15:45:17Z" | 28 | 0 | [
"format:parquet",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-02T15:45:15Z" | ---
dataset_info:
features: []
splits:
- name: train
num_bytes: 0
num_examples: 0
download_size: 324
dataset_size: 0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
LynxLegion/gzoalaidataset | LynxLegion | "2025-01-02T16:01:13Z" | 28 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-02T15:56:23Z" | ---
dataset_info:
features:
- name: instruction
dtype: string
- name: input
dtype: string
- name: response
dtype: string
splits:
- name: train
num_bytes: 2245.25
num_examples: 7
- name: test
num_bytes: 352
num_examples: 1
download_size: 9151
dataset_size: 2597.25
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
|
RyanYr/reflect_llama8b-t0_llama33-t12_om2-300to500k_llama_reflection | RyanYr | "2025-01-02T16:22:57Z" | 28 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-02T16:22:51Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: response
dtype: string
- name: response@0_correctness
dtype: bool
- name: response@2_correctness
dtype: bool
splits:
- name: train
num_bytes: 419889919
num_examples: 93382
download_size: 150620611
dataset_size: 419889919
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
RyanYr/reflect_llama8b-t0_llama33-t12_om2-300to500k_llama_correction | RyanYr | "2025-01-02T16:23:07Z" | 28 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-02T16:22:57Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: response
dtype: string
- name: response@0_correctness
dtype: bool
- name: response@2_correctness
dtype: bool
splits:
- name: train
num_bytes: 669669286
num_examples: 93382
download_size: 247345097
dataset_size: 669669286
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Nash-pAnDiTa/Moamn-x9U57UjWLFQ | Nash-pAnDiTa | "2025-01-02T16:42:14Z" | 28 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:audio",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-02T16:41:45Z" | ---
dataset_info:
features:
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: transcription
dtype: string
splits:
- name: train
num_bytes: 481502450.0
num_examples: 47
download_size: 481518029
dataset_size: 481502450.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Raghava1401/surg_mainv1 | Raghava1401 | "2025-01-02T17:52:50Z" | 28 | 0 | [
"license:mit",
"region:us"
] | null | "2025-01-02T17:52:15Z" | ---
license: mit
---
|
ThatsGroes/wiki_views | ThatsGroes | "2025-01-02T18:14:09Z" | 28 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-02T18:14:06Z" | ---
dataset_info:
features:
- name: article
dtype: string
- name: rank
dtype: int64
- name: timestamp
dtype: int64
- name: total.total
dtype: int64
- name: month
dtype: string
- name: timeRange.start
dtype: string
- name: timeRange.end
dtype: string
splits:
- name: train
num_bytes: 1785781
num_examples: 13882
download_size: 391994
dataset_size: 1785781
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
AhmedCodes64/FinTech_Datasets | AhmedCodes64 | "2025-01-02T19:16:21Z" | 28 | 0 | [
"license:mit",
"region:us"
] | null | "2025-01-02T19:16:21Z" | ---
license: mit
---
|
AlirezaF138/FAspell | AlirezaF138 | "2025-01-02T20:13:52Z" | 28 | 0 | [
"language:fa",
"license:cc-by-4.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-02T19:55:57Z" | ---
license: cc-by-4.0
language:
- fa
pretty_name: 'FAspell: Naturally-occurring Persian (Farsi) spelling mistakes'
size_categories:
- 1K<n<10K
configs:
- config_name: default
data_files:
- split: main
path: data/main-*
- split: ocr
path: data/ocr-*
dataset_info:
features:
- name: '#misspelt'
dtype: string
- name: corrected
dtype: string
- name: error-category
dtype: int64
splits:
- name: main
num_bytes: 192826
num_examples: 4858
- name: ocr
num_bytes: 26547
num_examples: 800
download_size: 102727
dataset_size: 219373
---
# FASpell Dataset
## Context
The FASpell dataset was developed to evaluate spell-checking algorithms. It consists of pairs of misspelled Persian (Farsi) words and their corresponding corrected forms, similar to the ASpell dataset used for English.
## Content
The dataset is divided into two parts:
1. **faspell_main**: A list of 5050 pairs collected from errors made by elementary school pupils and professional typists.
2. **faspell_ocr**: A list of 800 pairs collected from the output of a Farsi OCR system.
## Acknowledgements
The dataset is based on a work from [http://pars.ie/lr/FAspell_Dataset](http://pars.ie/lr/FAspell_Dataset). Please acknowledge the use of this dataset by referencing one of the following papers:
- Barari, L., & QasemiZadeh, B. (2005). CloniZER spell checker adaptive language independent spell checker. In AIML 2005 Conference CICC, Cairo, Egypt (pp. 65-71).
- QasemiZadeh, B., Ilkhani, A., & Ganjeii, A. (2006, June). Adaptive language independent spell checking using intelligent traverse on a tree. In Cybernetics and Intelligent Systems, 2006 IEEE Conference on (pp. 1-6). IEEE.
## License
FASpell by Behrang QasemiZadeh is licensed under a [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/). This work is based on [http://pars.ie/lr/FAspell_Dataset](http://pars.ie/lr/FAspell_Dataset).
## Inspiration
The dataset can be used to explore various questions, including:
- Which kinds of misspellings occur more often?
- Are certain characters more likely to be misspelled? Certain words?
- Can you construct a finite state automaton spell checker for Persian based on this data?
|
penfever/tulu-3-code | penfever | "2025-01-02T21:48:56Z" | 28 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-02T21:48:42Z" | ---
dataset_info:
features:
- name: id
dtype: string
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 441399414.4280896
num_examples: 142275
download_size: 148861735
dataset_size: 441399414.4280896
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Greenbe/greenbe | Greenbe | "2025-01-02T23:21:11Z" | 28 | 0 | [
"license:bigscience-openrail-m",
"region:us"
] | null | "2025-01-02T23:21:11Z" | ---
license: bigscience-openrail-m
---
|
prakash-sumit/ultravox-json2 | prakash-sumit | "2025-01-02T23:24:24Z" | 28 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-02T23:24:07Z" | ---
dataset_info:
features:
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
- name: transcription
dtype: string
- name: audio
struct:
- name: array
sequence: float64
- name: path
dtype: string
- name: sampling_rate
dtype: int64
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 79151421
num_examples: 40
- name: validation
num_bytes: 9009283
num_examples: 5
download_size: 65337532
dataset_size: 88160704
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
---
|
amuvarma/amu-zucktts-with-qaudio | amuvarma | "2025-01-03T01:43:30Z" | 28 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T01:42:41Z" | ---
dataset_info:
features:
- name: split_name
dtype: string
- name: index
dtype: string
- name: round
dtype: string
- name: question
dtype: string
- name: question_audio
struct:
- name: array
sequence: float64
- name: path
dtype: string
- name: sampling_rate
dtype: int64
- name: answer
dtype: string
- name: answer_snac
dtype: string
splits:
- name: train
num_bytes: 1909977535
num_examples: 2000
download_size: 1455327345
dataset_size: 1909977535
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
amuvarma/amu-zucktts-with-qaudio-total | amuvarma | "2025-01-03T02:04:11Z" | 28 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:audio",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T02:01:20Z" | ---
dataset_info:
features:
- name: split_name
dtype: string
- name: index
dtype: string
- name: round
dtype: string
- name: question
dtype: string
- name: question_audio
dtype: audio
- name: answer
dtype: string
- name: answer_snac
dtype: string
- name: answer_audio
struct:
- name: array
sequence: float64
- name: path
dtype: 'null'
- name: sampling_rate
dtype: int64
splits:
- name: train
num_bytes: 881164361.0
num_examples: 100
download_size: 686959233
dataset_size: 881164361.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Altariste/apeironnft_library | Altariste | "2025-01-03T02:01:34Z" | 28 | 0 | [
"license:llama3.3",
"region:us"
] | null | "2025-01-03T02:01:34Z" | ---
license: llama3.3
---
|
antitheft159/_600_soil_classification | antitheft159 | "2025-01-03T02:10:48Z" | 28 | 0 | [
"license:apache-2.0",
"region:us"
] | null | "2025-01-03T02:10:38Z" | ---
license: apache-2.0
---
|
ninetyone/so100_training_20250102_001 | ninetyone | "2025-01-03T04:25:09Z" | 28 | 0 | [
"task_categories:robotics",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:timeseries",
"modality:video",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us",
"LeRobot",
"so100"
] | [
"robotics"
] | "2025-01-03T04:25:08Z" | ---
license: apache-2.0
task_categories:
- robotics
tags:
- LeRobot
- so100
configs:
- config_name: default
data_files: data/*/*.parquet
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
## Dataset Description
- **Homepage:** [More Information Needed]
- **Paper:** [More Information Needed]
- **License:** apache-2.0
## Dataset Structure
[meta/info.json](meta/info.json):
```json
{
"codebase_version": "v2.0",
"robot_type": "so100",
"total_episodes": 2,
"total_frames": 2388,
"total_tasks": 1,
"total_videos": 2,
"total_chunks": 1,
"chunks_size": 1000,
"fps": 30,
"splits": {
"train": "0:2"
},
"data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet",
"video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4",
"features": {
"action": {
"dtype": "float32",
"shape": [
6
],
"names": [
"main_shoulder_pan",
"main_shoulder_lift",
"main_elbow_flex",
"main_wrist_flex",
"main_wrist_roll",
"main_gripper"
]
},
"observation.state": {
"dtype": "float32",
"shape": [
6
],
"names": [
"main_shoulder_pan",
"main_shoulder_lift",
"main_elbow_flex",
"main_wrist_flex",
"main_wrist_roll",
"main_gripper"
]
},
"observation.images.phone": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 30.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"timestamp": {
"dtype": "float32",
"shape": [
1
],
"names": null
},
"frame_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"episode_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"task_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
}
}
}
```
## Citation
**BibTeX:**
```bibtex
[More Information Needed]
``` |
Reaperxxxx/Vv | Reaperxxxx | "2025-01-03T04:29:42Z" | 28 | 0 | [
"task_categories:text-classification",
"language:an",
"size_categories:1K<n<10K",
"region:us"
] | [
"text-classification"
] | "2025-01-03T04:28:05Z" | ---
task_categories:
- text-classification
language:
- an
pretty_name: Reiker
size_categories:
- 1K<n<10K
--- |
DT4LM/t5v1-1ba_mr_faster-alzantot_differential_old5 | DT4LM | "2025-01-03T04:45:25Z" | 28 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T04:45:22Z" | ---
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: int32
splits:
- name: train
num_bytes: 60209
num_examples: 457
download_size: 42627
dataset_size: 60209
---
# Dataset Card for "t5v1-1ba_mr_faster-alzantot_differential_old5"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
DT4LM/t5v1-1ba_mr_faster-alzantot_differential_original_old5 | DT4LM | "2025-01-03T04:45:47Z" | 28 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T04:45:44Z" | ---
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: int32
splits:
- name: train
num_bytes: 59461
num_examples: 457
download_size: 41370
dataset_size: 59461
---
# Dataset Card for "t5v1-1ba_mr_faster-alzantot_differential_original_old5"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
nnheui/orig_feynman | nnheui | "2025-01-03T04:57:40Z" | 28 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T04:57:36Z" | ---
dataset_info:
features:
- name: name
dtype: string
- name: symbols
sequence: string
- name: symbol_descs
sequence: string
- name: symbol_properties
sequence: string
- name: expression
dtype: string
- name: symbol_ranges
sequence:
sequence: float64
splits:
- name: train
num_bytes: 25386
num_examples: 100
download_size: 9349
dataset_size: 25386
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
shin020810/LLM_23_121_1 | shin020810 | "2025-01-06T06:13:09Z" | 28 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T05:08:50Z" | ---
dataset_info:
- config_name: 공학
features:
- name: add_info
dtype: string
- name: question
dtype: string
- name: contents
dtype: string
splits:
- name: train
num_bytes: 1286078
num_examples: 705
- name: validation
num_bytes: 433218
num_examples: 235
- name: test
num_bytes: 437278
num_examples: 235
download_size: 7164738
dataset_size: 2156574
- config_name: 기타
features:
- name: add_info
dtype: string
- name: question
dtype: string
- name: contents
dtype: string
splits:
- name: train
num_bytes: 1129311
num_examples: 755
- name: validation
num_bytes: 377102
num_examples: 251
- name: test
num_bytes: 364546
num_examples: 251
download_size: 6605576
dataset_size: 1870959
- config_name: 명칭
features:
- name: add_info
dtype: string
- name: question
dtype: string
- name: contents
dtype: string
splits:
- name: train
num_bytes: 361032
num_examples: 268
- name: validation
num_bytes: 118551
num_examples: 89
- name: test
num_bytes: 124867
num_examples: 89
download_size: 2219772
dataset_size: 604450
- config_name: 보건
features:
- name: add_info
dtype: string
- name: question
dtype: string
- name: contents
dtype: string
splits:
- name: train
num_bytes: 991754
num_examples: 591
- name: validation
num_bytes: 329490
num_examples: 197
- name: test
num_bytes: 332551
num_examples: 196
download_size: 6558690
dataset_size: 1653795
- config_name: 사회
features:
- name: add_info
dtype: string
- name: question
dtype: string
- name: contents
dtype: string
splits:
- name: train
num_bytes: 1563926
num_examples: 902
- name: validation
num_bytes: 498755
num_examples: 300
- name: test
num_bytes: 516368
num_examples: 300
download_size: 8552226
dataset_size: 2579049
- config_name: 산업
features:
- name: add_info
dtype: string
- name: question
dtype: string
- name: contents
dtype: string
splits:
- name: train
num_bytes: 1106103
num_examples: 608
- name: validation
num_bytes: 360722
num_examples: 202
- name: test
num_bytes: 366224
num_examples: 202
download_size: 6154650
dataset_size: 1833049
- config_name: 예체능
features:
- name: add_info
dtype: string
- name: question
dtype: string
- name: contents
dtype: string
splits:
- name: train
num_bytes: 1584020
num_examples: 959
- name: validation
num_bytes: 513639
num_examples: 319
- name: test
num_bytes: 531817
num_examples: 319
download_size: 8962981
dataset_size: 2629476
- config_name: 인문
features:
- name: add_info
dtype: string
- name: question
dtype: string
- name: contents
dtype: string
splits:
- name: train
num_bytes: 1246574
num_examples: 716
- name: validation
num_bytes: 421538
num_examples: 238
- name: test
num_bytes: 423206
num_examples: 238
download_size: 7143675
dataset_size: 2091318
- config_name: 자연
features:
- name: add_info
dtype: string
- name: question
dtype: string
- name: contents
dtype: string
splits:
- name: train
num_bytes: 1996295
num_examples: 1252
- name: validation
num_bytes: 666300
num_examples: 417
- name: test
num_bytes: 684297
num_examples: 417
download_size: 11130635
dataset_size: 3346892
- config_name: 종교
features:
- name: add_info
dtype: string
- name: question
dtype: string
- name: contents
dtype: string
splits:
- name: train
num_bytes: 518461
num_examples: 309
- name: validation
num_bytes: 172873
num_examples: 103
- name: test
num_bytes: 177792
num_examples: 103
download_size: 3040989
dataset_size: 869126
configs:
- config_name: 공학
data_files:
- split: train
path: 공학/train-*
- split: validation
path: 공학/validation-*
- split: test
path: 공학/test-*
- config_name: 기타
data_files:
- split: train
path: 기타/train-*
- split: validation
path: 기타/validation-*
- split: test
path: 기타/test-*
- config_name: 명칭
data_files:
- split: train
path: 명칭/train-*
- split: validation
path: 명칭/validation-*
- split: test
path: 명칭/test-*
- config_name: 보건
data_files:
- split: train
path: 보건/train-*
- split: validation
path: 보건/validation-*
- split: test
path: 보건/test-*
- config_name: 사회
data_files:
- split: train
path: 사회/train-*
- split: validation
path: 사회/validation-*
- split: test
path: 사회/test-*
- config_name: 산업
data_files:
- split: train
path: 산업/train-*
- split: validation
path: 산업/validation-*
- split: test
path: 산업/test-*
- config_name: 예체능
data_files:
- split: train
path: 예체능/train-*
- split: validation
path: 예체능/validation-*
- split: test
path: 예체능/test-*
- config_name: 인문
data_files:
- split: train
path: 인문/train-*
- split: validation
path: 인문/validation-*
- split: test
path: 인문/test-*
- config_name: 자연
data_files:
- split: train
path: 자연/train-*
- split: validation
path: 자연/validation-*
- split: test
path: 자연/test-*
- config_name: 종교
data_files:
- split: train
path: 종교/train-*
- split: validation
path: 종교/validation-*
- split: test
path: 종교/test-*
---
|
YaoYX/llama_instruct_sample_second | YaoYX | "2025-01-03T05:41:37Z" | 28 | 0 | [
"license:apache-2.0",
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T05:25:49Z" | ---
license: apache-2.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
dataset_info:
features:
- name: instruction
dtype: string
- name: output
sequence: string
- name: scores
sequence: float64
splits:
- name: train
num_bytes: 21672514206
num_examples: 61135
download_size: 7573735271
dataset_size: 21672514206
---
|
dark9113/mtc1 | dark9113 | "2025-01-03T05:42:21Z" | 28 | 0 | [
"license:apache-2.0",
"region:us"
] | null | "2025-01-03T05:42:21Z" | ---
license: apache-2.0
---
|
Fern1221/test | Fern1221 | "2025-01-05T09:26:45Z" | 28 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:audio",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T06:17:32Z" | ---
dataset_info:
- config_name: en
features:
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
- name: audio
dtype: audio
splits:
- name: train
num_bytes: 1870258301.79
num_examples: 4633
download_size: 1434604695
dataset_size: 1870258301.79
- config_name: zh_tw
features:
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
- name: audio
dtype: audio
splits:
- name: train
num_bytes: 1491573523.458
num_examples: 3626
download_size: 1163252213
dataset_size: 1491573523.458
configs:
- config_name: en
data_files:
- split: train
path: en/train-*
- config_name: zh_tw
data_files:
- split: train
path: zh_tw/train-*
---
|
stzhao/ImageRewardModel-data | stzhao | "2025-01-08T07:51:59Z" | 28 | 0 | [
"task_categories:text-to-image",
"license:apache-2.0",
"size_categories:1M<n<10M",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us",
"images"
] | [
"text-to-image"
] | "2025-01-03T06:44:19Z" | ---
license: apache-2.0
task_categories:
- text-to-image
tags:
- images
size_categories:
- 1M<n<10M
configs:
- config_name: kadid
data_files: kadid/*.parquet
- config_name: koniq
data_files: koniq/*.parquet
- config_name: spaq
data_files: spaq/*.parquet
- config_name: agi
data_files: agi/*.parquet
- config_name: csiq
data_files: csiq/*.parquet
- config_name: live
data_files: live/*.parquet
- config_name: livec
data_files: livec/*.parquet
- config_name: imagerewarddb-test
data_files: imagerewarddb/test/*.parquet
- config_name: imagerewarddb-val
data_files: imagerewarddb/validation/*.parquet
- config_name: imagerewarddb-train
data_files: imagerewarddb/train/*.parquet
- config_name: ava
data_files: ava/*.parquet
- config_name: cgi
data_files: cgi/*.parquet
- config_name: hpdv2-train
data_files: hpdv2/train/*.parquet
---
|
dgambettavuw/D_gen10_run1_llama2-7b_xlsum_doc1000_real32_synt96_vuw | dgambettavuw | "2025-01-03T06:45:31Z" | 28 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T06:45:28Z" | ---
dataset_info:
features:
- name: id
dtype: int64
- name: doc
dtype: string
splits:
- name: train
num_bytes: 525938
num_examples: 1000
download_size: 264623
dataset_size: 525938
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
davoesgoats/my-distiset-be899639 | davoesgoats | "2025-01-03T07:00:28Z" | 28 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"library:distilabel",
"region:us",
"synthetic",
"distilabel",
"rlaif",
"datacraft"
] | null | "2025-01-03T07:00:26Z" | ---
size_categories: n<1K
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': genius
'1': straight-forward
splits:
- name: train
num_bytes: 5459
num_examples: 20
download_size: 5409
dataset_size: 5459
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
tags:
- synthetic
- distilabel
- rlaif
- datacraft
---
<p align="left">
<a href="https://github.com/argilla-io/distilabel">
<img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/>
</a>
</p>
# Dataset Card for my-distiset-be899639
This dataset has been created with [distilabel](https://distilabel.argilla.io/).
## Dataset Summary
This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI:
```console
distilabel pipeline run --config "https://huggingface.co/datasets/davoesgoats/my-distiset-be899639/raw/main/pipeline.yaml"
```
or explore the configuration:
```console
distilabel pipeline info --config "https://huggingface.co/datasets/davoesgoats/my-distiset-be899639/raw/main/pipeline.yaml"
```
## Dataset structure
The examples have the following structure per configuration:
<details><summary> Configuration: default </summary><hr>
```json
{
"label": 0,
"text": "His groundbreaking work on non-Euclidean geometry led to a fundamental shift in our understanding of spatial relationships and the nature of reality itself, fundamentally altering the paradigm of mathematical inquiry."
}
```
This subset can be loaded as:
```python
from datasets import load_dataset
ds = load_dataset("davoesgoats/my-distiset-be899639", "default")
```
Or simply as it follows, since there's only one configuration and is named `default`:
```python
from datasets import load_dataset
ds = load_dataset("davoesgoats/my-distiset-be899639")
```
</details>
|
DT4LM/gp_mrpc_kuleshov_var_differential_original | DT4LM | "2025-01-03T07:10:18Z" | 28 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T07:10:14Z" | ---
dataset_info:
features:
- name: question1
dtype: string
- name: question2
dtype: string
- name: label
dtype: int32
splits:
- name: train
num_bytes: 135834.37190082646
num_examples: 537
download_size: 98742
dataset_size: 135834.37190082646
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
DT4LM/t5v1-1ba_mrpc_kuleshov_var_differential_original | DT4LM | "2025-01-03T07:15:28Z" | 28 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T07:14:23Z" | ---
dataset_info:
features:
- name: question1
dtype: string
- name: question2
dtype: string
- name: label
dtype: int32
splits:
- name: train
num_bytes: 110388.25625920472
num_examples: 438
download_size: 79700
dataset_size: 110388.25625920472
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
ravinpadhy/WASP3DLlama_Data | ravinpadhy | "2025-01-03T08:58:17Z" | 28 | 0 | [
"task_categories:question-answering",
"language:en",
"license:llama3.2",
"size_categories:n<1K",
"format:json",
"modality:text",
"modality:3d",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"3d",
"wasp3d",
"designer",
"xpress",
"pro"
] | [
"question-answering"
] | "2025-01-03T07:16:22Z" | ---
license: llama3.2
task_categories:
- question-answering
language:
- en
tags:
- 3d
- wasp3d
- designer
- xpress
- pro
pretty_name: Real-Time Graphic Solutions for Livestreamers & TV Broadcasters
size_categories:
- 1K<n<10K
--- |
Greys-An/agentharm | Greys-An | "2025-01-03T07:26:59Z" | 28 | 0 | [
"license:apache-2.0",
"size_categories:n<1K",
"format:json",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"region:us"
] | null | "2025-01-03T07:25:59Z" | ---
license: apache-2.0
---
|
arumaekawa/wikipedia-ja | arumaekawa | "2025-01-03T08:23:40Z" | 28 | 0 | [
"size_categories:1M<n<10M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T07:34:10Z" | ---
dataset_info:
- config_name: default
features:
- name: text
dtype: string
splits:
- name: train
num_bytes: 6850373251
num_examples: 1389467
download_size: 3859739520
dataset_size: 6850373251
- config_name: original
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 7039610767
num_examples: 1389467
download_size: 3935695644
dataset_size: 7039610767
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- config_name: original
data_files:
- split: train
path: original/train-*
---
|
edwardlinelytone/test | edwardlinelytone | "2025-01-03T08:00:09Z" | 28 | 0 | [
"language:zh",
"license:llama3.2",
"region:us"
] | null | "2025-01-03T07:57:43Z" | ---
license: llama3.2
language:
- zh
---
Test!! |
ShunTatsukawa/roughness_pix2pix_dataset | ShunTatsukawa | "2025-01-03T08:54:27Z" | 28 | 0 | [
"license:mit",
"region:us"
] | null | "2025-01-03T08:00:01Z" | ---
license: mit
---
|
falan42/medlineplus1 | falan42 | "2025-01-03T08:48:01Z" | 28 | 0 | [
"license:apache-2.0",
"size_categories:n<1K",
"format:csv",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T08:47:46Z" | ---
license: apache-2.0
---
|
Asap7772/MedQA | Asap7772 | "2025-01-03T08:49:54Z" | 28 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T08:49:42Z" | ---
dataset_info:
features:
- name: question
dtype: string
- name: exp
dtype: string
- name: cop
dtype: int64
- name: opa
dtype: string
- name: opb
dtype: string
- name: opc
dtype: string
- name: opd
dtype: string
- name: subject_name
dtype: string
- name: topic_name
dtype: string
- name: id
dtype: string
- name: choice_type
dtype: string
splits:
- name: train
num_bytes: 131903297
num_examples: 182822
- name: validation
num_bytes: 2221428
num_examples: 4183
- name: test
num_bytes: 1399350
num_examples: 6150
download_size: 88312052
dataset_size: 135524075
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
|
robinwitch/zeroeggs_mhubert1000_rvq | robinwitch | "2025-01-03T09:19:05Z" | 28 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T08:56:54Z" | ---
dataset_info:
features:
- name: file
dtype: string
- name: text
sequence: string
- name: type
dtype: string
splits:
- name: all_data
num_bytes: 22407184
num_examples: 2772
- name: train
num_bytes: 22407184
num_examples: 2772
download_size: 1578278
dataset_size: 44814368
configs:
- config_name: default
data_files:
- split: all_data
path: data/all_data-*
- split: train
path: data/train-*
---
|
Selmher/bilder | Selmher | "2025-01-03T09:06:36Z" | 28 | 0 | [
"license:mit",
"size_categories:n<1K",
"format:imagefolder",
"modality:image",
"library:datasets",
"library:mlcroissant",
"region:us"
] | null | "2025-01-03T09:05:10Z" | ---
license: mit
---
|
Jake0808/generative-ai | Jake0808 | "2025-01-03T09:11:34Z" | 28 | 0 | [
"license:mit",
"size_categories:n<1K",
"format:imagefolder",
"modality:image",
"library:datasets",
"library:mlcroissant",
"region:us"
] | null | "2025-01-03T09:07:08Z" | ---
license: mit
---
|
chungouse/bilder | chungouse | "2025-01-03T09:18:40Z" | 28 | 0 | [
"license:mit",
"region:us"
] | null | "2025-01-03T09:18:40Z" | ---
license: mit
---
|
yeganehmohammadi98/persian-multi-source-corpus | yeganehmohammadi98 | "2025-01-04T12:16:38Z" | 28 | 0 | [
"language:fa",
"license:mit",
"size_categories:10M<n<100M",
"format:text",
"modality:text",
"library:datasets",
"library:mlcroissant",
"region:us"
] | null | "2025-01-03T09:28:32Z" | ---
license: mit
language:
- fa
---
---
license: mit
--- 📚 Persian Multi-Source Dataset Collection
🌟 Dataset Overview
A comprehensive Persian language dataset combining diverse sources to create a rich training corpus for language models.
📊 Data Sources
🌐 Public Datasets
MaralGPT Collections
Persian blogs
Persian quotes
Story Collections
TinyStories-Farsi
FarsiTinyStories
News & Media
Farsi news corpus
Persian daily news
Persian blog posts
Conversation & QA
Persian QA pairs
Telegram channel content
Specialized Content
ZharfaTech Open Platypus
ZharfaTech OpenAssistant Guanaco
Paraphrase detection corpus
ParsinLu entailment dataset
💬 Custom Collections
Nini Site Data
User comments
Discussion threads
User issues and queries
📈 Statistics
Multiple genres and writing styles
Diverse vocabulary range
Rich conversational patterns
Real-world language usage
🎯 Use Cases
Language Model Training
Conversational AI
Text Analysis
Persian NLP Research
✨ Features
🔄 Merged and cleaned data
📝 Natural language variations
💡 Rich contextual information
🗣️ Authentic Persian conversations
Perfect for training Persian language models with diverse, real-world language patterns!
#PersianNLP #Dataset #MachineLearning #NaturalLanguageProcessing #DataScience
|
open-vdb/fashion-mnist-784-euclidean | open-vdb | "2025-01-07T12:31:41Z" | 28 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T10:04:57Z" | ---
configs:
- config_name: train
data_files:
- split: train
path: train/*
- config_name: test
data_files:
- split: test
path: test/*
- config_name: neighbors
data_files:
- split: neighbors
path: neighbors/*
---
# Dataset Overview
dataset: fashion-mnist-784-euclidean
## Metadata
- **Creation Time**: 2025-01-07 11:02:55+0000
- **Update Time**: 2025-01-07 11:03:01+0000
- **Source**: https://github.com/erikbern/ann-benchmarks
- **Task**: N/A
- **Train Samples**: N/A
- **Test Samples**: N/A
- **License**: DISCLAIMER AND LICENSE NOTICE:
1. This dataset is intended for benchmarking and research purposes only.
2. The source data used in this dataset retains its original license and copyright. Users must comply with the respective licenses of the original data sources.
3. The ground truth part of the dataset (including but not limited to annotations, labels, and evaluation metrics) is licensed under Apache 2.0.
4. This dataset is provided 'AS IS' without any warranty. The dataset maintainers are not responsible for any copyright violations arising from the use of the source data.
5. If you are the copyright holder of any source data and believe it has been included inappropriately, please contact us for prompt removal.
6. Commercial use of this dataset must ensure compliance with the original data sources' licenses and obtain necessary permissions where required.
## Dataset Statistics
| Split | Name | Size | Num Rows | Num Columns | Schema | Num Files |
| --- | --- | --- | --- | --- | --- | --- |
| train | fashion-mnist-784-euclidean | 29.228 MB | 60000 | 2 | {<br> "idx": "int64",<br> "emb": "list<element: float>"<br>} | 1 |
| test | fashion-mnist-784-euclidean | 4.888 MB | 10000 | 2 | {<br> "idx": "int64",<br> "emb": "list<element: float>"<br>} | 1 |
| neighbors | fashion-mnist-784-euclidean | 72.713 MB | 10000 | 8 | {<br> "idx": "int64",<br> "neighbors_id": "list<element: int64>",<br> "neighbors_distance": "list<element: double>",<br> "metric": "string",<br> "query_expr": "null",<br> "pk_field_name": "string",<br> "vector_field_name": "string",<br> "top_k": "int64"<br>} | 1 |
|
sarahgillet/BrainstormingDataset | sarahgillet | "2025-01-10T20:54:12Z" | 28 | 0 | [
"task_categories:other",
"language:en",
"license:cc-by-nc-sa-4.0",
"size_categories:n>1T",
"region:us",
"human-robot interaction",
"group human-robot interaction",
"brainstorming",
"social behavior generation",
"heuristic demonstrations"
] | [
"other"
] | "2025-01-03T10:08:08Z" | ---
license: cc-by-nc-sa-4.0
pretty_name: Group-Brainstorming
size_categories:
- n>1T
task_categories:
- other
language:
- en
tags:
- human-robot interaction
- group human-robot interaction
- brainstorming
- social behavior generation
- heuristic demonstrations
extra_gated_prompt: >-
### Brainstorming Dataset COMMUNITY LICENSE AGREEMENT
Brainstorming Dataset Release Date: January 05, 2025 All the data within this repo are under [CC BY-NC-SA
4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/).
extra_gated_fields:
First Name: text
Last Name: text
Email: text
Country: country
Affiliation: text
Phone: text
Job title:
type: select
options:
- Student
- Research Graduate
- AI researcher
- AI developer/engineer
- Journalist
- Other
Research interest: text
geo: ip_location
By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Brainstorming Dataset Privacy Policy: checkbox
extra_gated_description: >-
The information you provide will be collected, stored, processed and shared in
accordance with the AgiBot Privacy Policy.
extra_gated_button_content: Submit
---
GitHub Badge |
DT4LM/naive_t5v1-1base_mrpc_pair_faster-alzantot_old7 | DT4LM | "2025-01-03T10:39:03Z" | 28 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T10:38:58Z" | ---
dataset_info:
features:
- name: question1
dtype: string
- name: question2
dtype: string
- name: label
dtype: int32
splits:
- name: train
num_bytes: 45508
num_examples: 199
download_size: 35774
dataset_size: 45508
---
# Dataset Card for "naive_t5v1-1base_mrpc_pair_faster-alzantot_old7"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
DT4LM/naive_t5v1-1base_mrpc_pair_faster-alzantot_original_old7 | DT4LM | "2025-01-03T10:39:32Z" | 28 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T10:39:28Z" | ---
dataset_info:
features:
- name: question1
dtype: string
- name: question2
dtype: string
- name: label
dtype: int32
splits:
- name: train
num_bytes: 45034
num_examples: 199
download_size: 35153
dataset_size: 45034
---
# Dataset Card for "naive_t5v1-1base_mrpc_pair_faster-alzantot_original_old7"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
JasonAlbert/MATH80 | JasonAlbert | "2025-01-03T10:42:53Z" | 28 | 0 | [
"license:mit",
"region:us"
] | null | "2025-01-03T10:42:52Z" | ---
license: mit
---
|
DT4LM/t5v1-1base_rte_kuleshov_var_original_old | DT4LM | "2025-01-03T10:46:08Z" | 28 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T10:46:05Z" | ---
dataset_info:
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype: int32
splits:
- name: train
num_bytes: 42955
num_examples: 132
download_size: 33128
dataset_size: 42955
---
# Dataset Card for "t5v1-1base_rte_kuleshov_var_original_old"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
DT4LM/t5v1-1ba_rte_kuleshov_var_differential_original_old | DT4LM | "2025-01-03T10:47:57Z" | 28 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T10:47:54Z" | ---
dataset_info:
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype: int32
splits:
- name: train
num_bytes: 33334
num_examples: 101
download_size: 26780
dataset_size: 33334
---
# Dataset Card for "t5v1-1ba_rte_kuleshov_var_differential_original_old"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
DT4LM/t5v1-1base_rte_pair_kuleshov_var_old | DT4LM | "2025-01-03T10:49:14Z" | 28 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T10:49:11Z" | ---
dataset_info:
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype: int32
splits:
- name: train
num_bytes: 54713
num_examples: 166
download_size: 41409
dataset_size: 54713
---
# Dataset Card for "t5v1-1base_rte_pair_kuleshov_var_old"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
DT4LM/t5v1-1base_rte_pair_kuleshov_var_original_old | DT4LM | "2025-01-03T10:49:37Z" | 28 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T10:49:33Z" | ---
dataset_info:
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype: int32
splits:
- name: train
num_bytes: 54499
num_examples: 166
download_size: 42564
dataset_size: 54499
---
# Dataset Card for "t5v1-1base_rte_pair_kuleshov_var_original_old"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
kaareej/bildertom2 | kaareej | "2025-01-03T11:11:17Z" | 28 | 0 | [
"license:mit",
"size_categories:n<1K",
"format:imagefolder",
"modality:image",
"library:datasets",
"library:mlcroissant",
"region:us"
] | null | "2025-01-03T11:10:49Z" | ---
license: mit
---
|
atlasia/FineWeb2-Moroccan-Arabic-Predictions-0.9 | atlasia | "2025-01-03T12:44:35Z" | 28 | 0 | [
"size_categories:10M<n<100M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T12:19:32Z" | ---
dataset_info:
features:
- name: text
dtype: string
- name: prediction
struct:
- name: prediction_confidence
dtype: float64
- name: prediction_label
dtype: string
splits:
- name: train
num_bytes: 5595607628.85211
num_examples: 21420806
download_size: 2351016812
dataset_size: 5595607628.85211
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Moroccan Darija Dataset (Filtered from FineWeb2)
This dataset contains Moroccan Darija samples extracted from the [FineWeb2](https://huggingface.co/datasets/Omartificial-Intelligence-Space/FineWeb2-Moroccan-Arabic) dataset.
The extraction was performed using a [custom model](https://huggingface.co/atlasia/SfaIA-Arabic-Dialect-Identifier/tree/main/) trained to classify Arabic dialects, including Moroccan Darija (here we used the version `model_binary_v3_1fpr.bin`).
Here, we kept samples with a high confidence score (above 0.9) for Moroccan Darija.
This dataset aims to advance research and development in Moroccan Darija NLP tasks.
---
## Dataset Description
Moroccan Darija, a widely spoken Arabic dialect in Morocco, is underrepresented in NLP resources. This dataset fills that gap by filtering FineWeb2 using an advanced classifier designed to accurately identify Moroccan Darija text. The resulting dataset is a valuable resource for tasks such as:
- Language modeling
- Sentiment analysis
- Machine translation
- Dialectal classification
---
## Extraction Methodology
1. **Base Dataset**: FineWeb2, a large-scale multilingual web dataset.
1. **First extraction using GlotLID**: [A version](https://huggingface.co/datasets/Omartificial-Intelligence-Space/FineWeb2-Moroccan-Arabic) with extraction using GlotLID.
2. **SfaIA Model**: A fasttext model trained to identify Arabic dialects, including Moroccan Darija with better performances than GlotLID.
3. **Pipeline**:
- Text samples from the [dataset](https://huggingface.co/datasets/Omartificial-Intelligence-Space/FineWeb2-Moroccan-Arabic) were passed through the SfaIA classifier.
- Only samples with a high confidence score (above 0.9) for Moroccan Darija were retained.
---
## Dataset Structure
- `text`: The raw text sample in Moroccan Darija.
- `prediction`:
- `prediction_confidence`: Model confidence score for each sample.
- `prediction_label`: Model predicted label.
Example entry:
```json
{
"text": "السلام عليكم، كيف دايرين؟",
"prediction": {
'prediction_confidence': 0.952466607093811,
'prediction_label': 'Morocco'
}
} |
atlasia/FineWeb2-Moroccan-Arabic-Predictions-0.8 | atlasia | "2025-01-03T12:44:56Z" | 28 | 0 | [
"size_categories:10M<n<100M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T12:27:38Z" | ---
dataset_info:
features:
- name: text
dtype: string
- name: prediction
struct:
- name: prediction_confidence
dtype: float64
- name: prediction_label
dtype: string
splits:
- name: train
num_bytes: 6386386917.484202
num_examples: 24448025
download_size: 2817669136
dataset_size: 6386386917.484202
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Moroccan Darija Dataset (Filtered from FineWeb2)
This dataset contains Moroccan Darija samples extracted from the [FineWeb2](https://huggingface.co/datasets/Omartificial-Intelligence-Space/FineWeb2-Moroccan-Arabic) dataset.
The extraction was performed using a [custom model](https://huggingface.co/atlasia/SfaIA-Arabic-Dialect-Identifier/tree/main/) trained to classify Arabic dialects, including Moroccan Darija (here we used the version `model_binary_v3_1fpr.bin`).
Here, we kept samples with a high confidence score (above 0.9) for Moroccan Darija.
This dataset aims to advance research and development in Moroccan Darija NLP tasks.
---
## Dataset Description
Moroccan Darija, a widely spoken Arabic dialect in Morocco, is underrepresented in NLP resources. This dataset fills that gap by filtering FineWeb2 using an advanced classifier designed to accurately identify Moroccan Darija text. The resulting dataset is a valuable resource for tasks such as:
- Language modeling
- Sentiment analysis
- Machine translation
- Dialectal classification
---
## Extraction Methodology
1. **Base Dataset**: FineWeb2, a large-scale multilingual web dataset.
1. **First extraction using GlotLID**: [A version](https://huggingface.co/datasets/Omartificial-Intelligence-Space/FineWeb2-Moroccan-Arabic) with extraction using GlotLID.
2. **SfaIA Model**: A fasttext model trained to identify Arabic dialects, including Moroccan Darija with better performances than GlotLID.
3. **Pipeline**:
- Text samples from the [dataset](https://huggingface.co/datasets/Omartificial-Intelligence-Space/FineWeb2-Moroccan-Arabic) were passed through the SfaIA classifier.
- Only samples with a high confidence score (above 0.8) for Moroccan Darija were retained.
---
## Dataset Structure
- `text`: The raw text sample in Moroccan Darija.
- `prediction`:
- `prediction_confidence`: Model confidence score for each sample.
- `prediction_label`: Model predicted label.
Example entry:
```json
{
"text": "السلام عليكم، كيف دايرين؟",
"prediction": {
'prediction_confidence': 0.852466607093811,
'prediction_label': 'Morocco'
}
} |
atlasia/FineWeb2-Moroccan-Arabic-Predictions-0.6 | atlasia | "2025-01-03T13:06:05Z" | 28 | 0 | [
"size_categories:10M<n<100M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T12:46:00Z" | ---
dataset_info:
features:
- name: text
dtype: string
- name: prediction
struct:
- name: prediction_confidence
dtype: float64
- name: prediction_label
dtype: string
splits:
- name: train
num_bytes: 7436938915.663112
num_examples: 28469692
download_size: 3479461701
dataset_size: 7436938915.663112
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Moroccan Darija Dataset (Filtered from FineWeb2)
This dataset contains Moroccan Darija samples extracted from the [FineWeb2](https://huggingface.co/datasets/Omartificial-Intelligence-Space/FineWeb2-Moroccan-Arabic) dataset.
The extraction was performed using a [custom model](https://huggingface.co/atlasia/SfaIA-Arabic-Dialect-Identifier/tree/main/) trained to classify Arabic dialects, including Moroccan Darija (here we used the version `model_binary_v3_1fpr.bin`).
Here, we kept samples with a high confidence score (above 0.6) for Moroccan Darija.
This dataset aims to advance research and development in Moroccan Darija NLP tasks.
---
## Dataset Description
Moroccan Darija, a widely spoken Arabic dialect in Morocco, is underrepresented in NLP resources. This dataset fills that gap by filtering FineWeb2 using an advanced classifier designed to accurately identify Moroccan Darija text. The resulting dataset is a valuable resource for tasks such as:
- Language modeling
- Sentiment analysis
- Machine translation
- Dialectal classification
---
## Extraction Methodology
1. **Base Dataset**: FineWeb2, a large-scale multilingual web dataset.
1. **First extraction using GlotLID**: [A version](https://huggingface.co/datasets/Omartificial-Intelligence-Space/FineWeb2-Moroccan-Arabic) with extraction using GlotLID.
2. **SfaIA Model**: A fasttext model trained to identify Arabic dialects, including Moroccan Darija with better performances than GlotLID.
3. **Pipeline**:
- Text samples from the [dataset](https://huggingface.co/datasets/Omartificial-Intelligence-Space/FineWeb2-Moroccan-Arabic) were passed through the SfaIA classifier.
- Only samples with a high confidence score (above 0.6) for Moroccan Darija were retained.
---
## Dataset Structure
- `text`: The raw text sample in Moroccan Darija.
- `prediction`:
- `prediction_confidence`: Model confidence score for each sample.
- `prediction_label`: Model predicted label.
Example entry:
```json
{
"text": "السلام عليكم، كيف دايرين؟",
"prediction": {
'prediction_confidence': 0.652466607093811,
'prediction_label': 'Morocco'
}
} |
Orbina-development/web-search-sartlar | Orbina-development | "2025-01-03T12:50:15Z" | 28 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T12:50:14Z" | ---
dataset_info:
features:
- name: question
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: snippet
dtype: string
- name: content
dtype: string
- name: instruction
dtype: string
- name: similarity_score
dtype: float64
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 1048580
num_examples: 26
download_size: 497110
dataset_size: 1048580
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
riswanahamed/Distilabel_demo | riswanahamed | "2025-01-03T13:03:57Z" | 28 | 0 | [
"license:mit",
"region:us"
] | null | "2025-01-03T13:03:57Z" | ---
license: mit
---
|
dstc12/bot_adversarial_dialogue | dstc12 | "2025-01-16T15:03:14Z" | 28 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T13:08:03Z" | ---
dataset_info:
- config_name: ar
features:
- name: context
sequence: string
- name: response
dtype: string
- name: safety_label
dtype: int64
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 64925668
num_examples: 65056
- name: val
num_bytes: 6540675
num_examples: 6576
- name: test
num_bytes: 2363628
num_examples: 2414
download_size: 17596883
dataset_size: 73829971
- config_name: de
features:
- name: context
sequence: string
- name: response
dtype: string
- name: safety_label
dtype: int64
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 53271040
num_examples: 65001
- name: val
num_bytes: 5360026
num_examples: 6582
- name: test
num_bytes: 1939938
num_examples: 2409
download_size: 12951155
dataset_size: 60571004
- config_name: en
features:
- name: context
sequence: string
- name: response
dtype: string
- name: safety_label
dtype: int64
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 51001236
num_examples: 69274
- name: val
num_bytes: 5111274
num_examples: 7002
- name: test
num_bytes: 1888499
num_examples: 2598
download_size: 7710984
dataset_size: 58001009
- config_name: es
features:
- name: context
sequence: string
- name: response
dtype: string
- name: safety_label
dtype: int64
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 46095752
num_examples: 61553
- name: val
num_bytes: 4690932
num_examples: 6284
- name: test
num_bytes: 1706463
num_examples: 2309
download_size: 10695746
dataset_size: 52493147
- config_name: fr
features:
- name: context
sequence: string
- name: response
dtype: string
- name: safety_label
dtype: int64
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 52349891
num_examples: 64188
- name: val
num_bytes: 5239104
num_examples: 6468
- name: test
num_bytes: 1898513
num_examples: 2377
download_size: 12670821
dataset_size: 59487508
- config_name: ja
features:
- name: context
sequence: string
- name: response
dtype: string
- name: safety_label
dtype: int64
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 62435092
num_examples: 65343
- name: val
num_bytes: 6297396
num_examples: 6602
- name: test
num_bytes: 2260734
num_examples: 2422
download_size: 18434564
dataset_size: 70993222
- config_name: pt
features:
- name: context
sequence: string
- name: response
dtype: string
- name: safety_label
dtype: int64
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 73137272
num_examples: 65536
- name: val
num_bytes: 5128328
num_examples: 6632
- name: test
num_bytes: 1856522
num_examples: 2436
download_size: 21047681
dataset_size: 80122122
- config_name: zh
features:
- name: context
sequence: string
- name: response
dtype: string
- name: safety_label
dtype: int64
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 45799844
num_examples: 65920
- name: val
num_bytes: 4649404
num_examples: 6692
- name: test
num_bytes: 1664162
num_examples: 2442
download_size: 13987297
dataset_size: 52113410
configs:
- config_name: ar
data_files:
- split: train
path: ar/train-*
- split: val
path: ar/val-*
- split: test
path: ar/test-*
- config_name: de
data_files:
- split: train
path: de/train-*
- split: val
path: de/val-*
- split: test
path: de/test-*
- config_name: en
data_files:
- split: train
path: en/train-*
- split: val
path: en/val-*
- split: test
path: en/test-*
- config_name: es
data_files:
- split: train
path: es/train-*
- split: val
path: es/val-*
- split: test
path: es/test-*
- config_name: fr
data_files:
- split: train
path: fr/train-*
- split: val
path: fr/val-*
- split: test
path: fr/test-*
- config_name: ja
data_files:
- split: train
path: ja/train-*
- split: val
path: ja/val-*
- split: test
path: ja/test-*
- config_name: pt
data_files:
- split: train
path: pt/train-*
- split: val
path: pt/val-*
- split: test
path: pt/test-*
- config_name: zh
data_files:
- split: train
path: zh/train-*
- split: val
path: zh/val-*
- split: test
path: zh/test-*
---
Access to this dataset is restricted to DSTC12 Track 1 Participants. For more details please visit the [website](https://chateval.org/dstc12).
Baseline results using `meta-llama/Llama-Guard-3-1B`:
<table>
<thead>
<tr>
<th scope="col">Language</th>
<th scope="col">ROC-AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabic (ar)</td>
<td>0.6884</td>
</tr>
<tr>
<td>German (de)</td>
<td>0.7241</td>
</tr>
<tr>
<td>English (en)</td>
<td>0.7571</td>
</tr>
<tr>
<td>Spanish (es)</td>
<td>0.6961</td>
</tr>
<tr>
<td>French (fr)</td>
<td>0.7113</td>
</tr>
<tr>
<td>Japanese (ja)</td>
<td>0.7041</td>
</tr>
<tr>
<td>Portuguese (pt)</td>
<td>0.7146</td>
</tr>
<tr>
<td>Chinese (zh)</td>
<td>0.7143</td>
</tr>
<tr>
<td><b>Average (all)</b></td>
<td>0.7137</td>
</tr> |
yxdu/news-commentary | yxdu | "2025-01-03T15:22:15Z" | 28 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T15:19:50Z" | ---
dataset_info:
features:
- name: zh_token
sequence: int64
- name: en_token
sequence: int64
- name: zh_text
dtype: string
- name: en_text
dtype: string
splits:
- name: train
num_bytes: 2894233399
num_examples: 314446
- name: dev
num_bytes: 360129734
num_examples: 39233
- name: test
num_bytes: 362192405
num_examples: 39305
download_size: 626007357
dataset_size: 3616555538
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: dev
path: data/dev-*
- split: test
path: data/test-*
---
|
zekeZZ/gpqa_chem | zekeZZ | "2025-01-03T16:00:08Z" | 28 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T16:00:07Z" | ---
dataset_info:
features:
- name: Subdomain
dtype: string
- name: question
dtype: string
- name: choices
sequence: string
- name: answer
dtype: int64
splits:
- name: train
num_bytes: 125506.546875
num_examples: 183
download_size: 61576
dataset_size: 125506.546875
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
zekeZZ/gpqa_physics | zekeZZ | "2025-01-03T16:00:09Z" | 28 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T16:00:08Z" | ---
dataset_info:
features:
- name: Subdomain
dtype: string
- name: question
dtype: string
- name: choices
sequence: string
- name: answer
dtype: int64
splits:
- name: train
num_bytes: 128249.859375
num_examples: 187
download_size: 65815
dataset_size: 128249.859375
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
manu-gaur/NDLB_data | manu-gaur | "2025-01-03T16:51:02Z" | 28 | 1 | [
"license:apache-2.0",
"region:us"
] | null | "2025-01-03T16:16:54Z" | ---
license: apache-2.0
---
|
searchivarius/test2 | searchivarius | "2025-01-03T16:41:04Z" | 28 | 0 | [
"license:apache-2.0",
"size_categories:n<1K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T16:34:20Z" | ---
license: apache-2.0
---
|
manu-gaur/NDLB-TrueMatch-Benchmark | manu-gaur | "2025-01-04T09:44:48Z" | 28 | 1 | [
"license:apache-2.0",
"region:us"
] | null | "2025-01-03T17:15:16Z" | ---
license: apache-2.0
---
|
ChicagoHAI/language-of-bargaining | ChicagoHAI | "2025-01-03T19:07:08Z" | 28 | 1 | [
"license:cc-by-nc-sa-4.0",
"arxiv:2306.07117",
"region:us"
] | null | "2025-01-03T17:18:10Z" | ---
license: cc-by-nc-sa-4.0
viewer: false
extra_gated_prompt: >-
### Language of Bargaining Data License Agreement
All the data within this repo are under this [Data License Agreement](https://drive.google.com/file/d/1VXLYPIgd8rm6SoLXaH97KeDqwYmEmFc5/view?usp=share_link).
extra_gated_fields:
First Name: text
Last Name: text
Email: text
Affiliation: text
Job Title: text
By clicking Submit below I acknowledge that I have read the data license agreement, understand it, and agree to be bound by its terms and conditions: checkbox
extra_gated_button_content: Submit
---
# Language of Bargaining Dataset
## Dataset Description
- **Paper:** [https://arxiv.org/abs/2306.07117]()
## Dataset Summary
This repo contains the Natural Language (NL) and Alternating Offer (AO) negotation transcript data as described in https://aclanthology.org/2023.acl-long.735.pdf.
The data includes the "Bargaining Act" annotations for the NL setting.
## Dataset Information
Within the `negotiations-data.zip` compressed folder you will find two folders containing the AO and NL data.
### Alternating Offers (AO)
The AO data is found in the folder `ao`. The folder contains 230 files, each one representing a single negotation conducted in the AO setting. They are in JSONL format where each line adheres to the following schema:
```yaml
{
"id": string,
"role": string seller|buyer,
"message": float,
"created_at": datetime,
"status": string
}
```
There are multiple ways you could load this data, here is an example using the [pandas Python package](https://pandas.pydata.org/) for loading a single negotiation transcript, e.g. `ao/299.jsonl`.
```
import pandas as pd
ao_file = 'ao/299.jsonl'
negotiation_df = pd.read_json(ao_file, orient='records', lines=True)
```
### Natural language (NL)
The NL data is found in the folder `nl`. The folder contains 178 files, each one representing a single negotation conducted in the NL setting. They are in JSON format and adhere to the following schema:
```yaml
{
"duration_min": float,
"turns": [
[
{
"ID": string,
"Role": string seller|buyer,
"Word": string,
"Span": string,
"Spoken Numeric": string,
"Numeric": string,
"Category": string,
"Firm or Soft": string,
"External Incentive": string
},
...
{
...
},
]
]
}
```
There are multiple ways you could load this data, here is an example using the json and [pandas Python package](https://pandas.pydata.org/) for loading a single negotiation transcript, e.g. `nl/100.json`.
```
import pandas as pd
import json
nl_file = 'nl/100.json'
with open(nl_file, 'r') as f:
data = json.load(f)
# data contains the data, in json, of the entire negotiation
for utt in data['turns']:
turn_df = pd.DataFrame.from_records(utt)
# turn_df contains a single utterance, as a dataframe, where each row corresponds to one transcribed word.
# Process and do something with turn_df here...
```
### Annotation Instructions
Below is a relevant portion of the instructions provided to annotators. It shoud help clarify the data:
- Span:
- `x` on all tokens included in the actual offer
- Be inclusive - main idea is to exclude entirely different sentences
- Spoken Numeric
- `t`: if thousands place is spoken aloud (234,000), else blank
- Numeric (i.e. offer amount)
- Single number (plain numeric, thousands)
- 220
- Range or Bounds
- [220, 225] [,225] [220,]
- Category
- `n`: Numeric Offer (common case) - used for new numeric offers (numbers that haven’t been mentioned yet)
- `p`: Push (request the other person move in my direction, mainly needs to reference offer made by other party)
- `a`: Allowance (offer to move in the other persons’ direction without explicit number, needs to reference offer made by other party)
- `c`: Comparisons to prices of external stuff (price of comparable house, price of imaginary existing offers)
- `r`: Repetition of previous offer, non-committal
- `e`: End of negotiation via offer acceptance entering mutual common ground (e.g., offer given followed by, “That works for me, let’s do it.”) - explicitly only happens once.
- Firm or Soft
- `s`: Soft number (e.g., 220ish)
- Suffixes: “-ish”, prefixes: “around”, etc.
- `f`: Firm number
- External Incentive
- `y`: speaker incorporates as a part of the offer non-monetary incentives (landscaping, sale/offer timing, cash payment of amount vs mortgage), needs to reference an offer.
### Anonymizing
We replaced all occurences of participant names with the token `[PERSON]`.
## Citation
If you use this dataset in your research or publication, please cite it as:
```
@inproceedings{heddaya-etal-2023-language,
title = "Language of Bargaining",
author = "Heddaya, Mourad and
Dworkin, Solomon and
Tan, Chenhao and
Voigt, Rob and
Zentefis, Alexander",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.735",
pages = "13161--13185",
}
```
|
Lots-of-LoRAs/task375_classify_type_of_sentence_in_debate | Lots-of-LoRAs | "2025-01-03T17:46:34Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-03T17:46:32Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task375_classify_type_of_sentence_in_debate
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 320
- name: valid
num_examples: 40
- name: test
num_examples: 40
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task375_classify_type_of_sentence_in_debate
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task1705_ljspeech_classification | Lots-of-LoRAs | "2025-01-03T17:47:24Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-03T17:47:23Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task1705_ljspeech_classification
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 80
- name: valid
num_examples: 10
- name: test
num_examples: 10
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task1705_ljspeech_classification
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task1267_ted_translation_fa_es | Lots-of-LoRAs | "2025-01-03T17:47:53Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-03T17:47:51Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task1267_ted_translation_fa_es
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 5122
- name: valid
num_examples: 640
- name: test
num_examples: 641
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task1267_ted_translation_fa_es
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task1621_menyo20k-mt_en_yo_language_identification | Lots-of-LoRAs | "2025-01-03T17:48:37Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-03T17:48:36Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task1621_menyo20k-mt_en_yo_language_identification
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 3183
- name: valid
num_examples: 398
- name: test
num_examples: 398
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task1621_menyo20k-mt_en_yo_language_identification
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task1370_newscomm_classification | Lots-of-LoRAs | "2025-01-03T17:49:43Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-03T17:49:42Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task1370_newscomm_classification
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 1934
- name: valid
num_examples: 242
- name: test
num_examples: 242
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task1370_newscomm_classification
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task539_alt_translation_ma_en | Lots-of-LoRAs | "2025-01-03T17:50:41Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-03T17:50:38Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task539_alt_translation_ma_en
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 479
- name: valid
num_examples: 60
- name: test
num_examples: 60
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task539_alt_translation_ma_en
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task1224_ted_translation_ja_ar | Lots-of-LoRAs | "2025-01-03T17:51:03Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-03T17:51:01Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task1224_ted_translation_ja_ar
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 5143
- name: valid
num_examples: 643
- name: test
num_examples: 643
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task1224_ted_translation_ja_ar
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task561_alt_translation_en_bg | Lots-of-LoRAs | "2025-01-03T17:52:16Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-03T17:52:14Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task561_alt_translation_en_bg
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 480
- name: valid
num_examples: 60
- name: test
num_examples: 60
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task561_alt_translation_en_bg
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task368_synthetic_even_or_odd_calculation | Lots-of-LoRAs | "2025-01-03T17:54:17Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-03T17:54:15Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task368_synthetic_even_or_odd_calculation
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 5196
- name: valid
num_examples: 649
- name: test
num_examples: 650
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task368_synthetic_even_or_odd_calculation
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
Lots-of-LoRAs/task1096_ted_translation_ja_it | Lots-of-LoRAs | "2025-01-03T17:54:47Z" | 28 | 0 | [
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] | [
"text-generation"
] | "2025-01-03T17:54:44Z" | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task1096_ted_translation_ja_it
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 5128
- name: valid
num_examples: 641
- name: test
num_examples: 641
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task1096_ted_translation_ja_it
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|