NohTow commited on
Commit
11e6ffa
·
verified ·
1 Parent(s): a342dfd

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ multilinguality:
5
+ - monolingual
6
+ size_categories:
7
+ - 100K<n<1M
8
+ task_categories:
9
+ - feature-extraction
10
+ - sentence-similarity
11
+ pretty_name: ms-marco-english
12
+ tags:
13
+ - sentence-transformers
14
+ - colbert
15
+ - lightonai
16
+ dataset_info:
17
+ - config_name: queries
18
+ features:
19
+ - name: query_id
20
+ dtype: string
21
+ - name: text
22
+ dtype: string
23
+ splits:
24
+ - name: train
25
+ num_examples: 808731
26
+ - config_name: documents
27
+ features:
28
+ - name: document_id
29
+ dtype: string
30
+ - name: text
31
+ dtype: string
32
+ splits:
33
+ - name: train
34
+ num_examples: 8841823
35
+ - config_name: train
36
+ features:
37
+ - name: query_id
38
+ dtype: string
39
+ - name: document_ids
40
+ sequence:
41
+ value:
42
+ dtype: string
43
+ - name: scores
44
+ sequence:
45
+ value:
46
+ dtype: float32
47
+ splits:
48
+ - name: train
49
+ num_examples: 808728
50
+ configs:
51
+ - config_name: queries
52
+ data_files:
53
+ - split: train
54
+ path: english_queries.train.parquet
55
+ - config_name: documents
56
+ data_files:
57
+ - split: train
58
+ path: english_collection.parquet
59
+ - config_name: train
60
+ data_files:
61
+ - split: train
62
+ path: dataset.parquet
63
+ ---
64
+
65
+ # ms-marco-en-bge
66
+
67
+ This dataset contains the [MS MARCO](https://microsoft.github.io/msmarco/) dataset with documents similar to the query mined using [BGE-M3](https://huggingface.co/BAAI/bge-m3) and then scored by [bge-reranker-v2-m3](BAAI/bge-reranker-v2-m3). It can be used to train a retrieval model using knowledge distillation.
68
+
69
+ #### `knowledge distillation`
70
+
71
+ To fine-tune a model using knowledge distillation loss we will need three distinct file:
72
+
73
+ * Datasets
74
+ ```python
75
+ from datasets import load_dataset
76
+
77
+ train = load_dataset(
78
+ "lightonai/ms-marco-en-bge",
79
+ "train",
80
+ split="train",
81
+ )
82
+
83
+ queries = load_dataset(
84
+ "lightonai/ms-marco-en-bge",
85
+ "queries",
86
+ split="train",
87
+ )
88
+
89
+ documents = load_dataset(
90
+ "lightonai/ms-marco-en-bge",
91
+ "documents",
92
+ split="train",
93
+ )
94
+ ```
95
+
96
+ Where:
97
+ - `train` contains three distinct columns: `['query_id', 'document_ids', 'scores']`
98
+
99
+ ```python
100
+ {
101
+ "query_id": 54528,
102
+ "document_ids": [
103
+ 6862419,
104
+ 335116,
105
+ 339186,
106
+ 7509316,
107
+ 7361291,
108
+ 7416534,
109
+ 5789936,
110
+ 5645247,
111
+ ],
112
+ "scores": [
113
+ 0.4546215673141326,
114
+ 0.6575686537173476,
115
+ 0.26825184192900203,
116
+ 0.5256195579370395,
117
+ 0.879939718687207,
118
+ 0.7894968184862693,
119
+ 0.6450100468854655,
120
+ 0.5823844608171467,
121
+ ],
122
+ }
123
+ ```
124
+
125
+ Assert that the length of document_ids is the same as scores.
126
+
127
+ - `queries` contains two distinct columns: `['query_id', 'text']`
128
+
129
+ ```python
130
+ {"query_id": 749480, "text": "what is function of magnesium in human body"}
131
+ ```
132
+
133
+ - `documents` contains two distinct columns: `['document_ids', 'text']`
134
+
135
+ ```python
136
+ {
137
+ "document_id": 136062,
138
+ "text": "2. Also called tan .a fundamental trigonometric function that, in a right triangle, is expressed as the ratio of the side opposite an acute angle to the side adjacent to that angle. 3. in immediate physical contact; touching; abutting. 4. a. touching at a single point, as a tangent in relation to a curve or surface.lso called tan .a fundamental trigonometric function that, in a right triangle, is expressed as the ratio of the side opposite an acute angle to the side adjacent to that angle. 3. in immediate physical contact; touching; abutting. 4. a. touching at a single point, as a tangent in relation to a curve or surface.",
139
+ }
140
+ ```
dataset.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d363f28d54a498a38e586983c1e4e06380b81196f6591379c46c4723f40e081
3
+ size 340140593
english_collection.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d48ea2740ac952d441429e64725aa1f2e6beada3e4c07135cb794e14a9b1bedc
3
+ size 1643716390
english_queries.train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a386489eb9c6c88e75b57e1d6062fbb08ad9fc277700cdf7aa4e79fa1042581d
3
+ size 25623832