DSBench / data_analysis /show_result.py
liqiang888's picture
Upload 674 files
62722a6 verified
raw
history blame
1.81 kB
from tqdm import tqdm
import os
samples = []
with open("./data.json", "r") as f:
for line in f:
samples.append(eval(line.strip()))
def read_txt(path):
with open(path, "r") as f:
return f.read()
save_path = "./save_process"
# model = 'llava-v1.5-13b'
# model = 'llama-3-8b-instruct'
model = "gpt-3.5-turbo-0125"
# model = 'gpt-4o-2024-05-13'
results = []
with open(os.path.join(save_path, model, "results.json"), "r") as f:
for line in f:
results += eval(line.strip())
costs = []
time_cost = []
id = 0
for sample in tqdm(samples):
result = []
if len(sample["questions"]) > 0:
predicts = []
with open(os.path.join(save_path, model, sample['id']+".json"), "r") as f:
for line in f:
pre = eval(line.strip())
predicts.append(pre)
costs.append(pre['cost'])
time_cost.append(pre['time'])
id += 1
results_c = []
for i, result in enumerate(results):
if "true" in result.lower():
results_c.append(True)
else:
results_c.append(False)
# if i>=11:
# break
idx = 0
score4cha = []
for i, sample in enumerate(samples):
if len(sample["questions"]) > 0:
score_ = sum(results_c[idx:idx+len(sample["questions"])]) / len(sample["questions"])
idx += len(sample["questions"])
score4cha.append(score_)
acc = sum(results_c) / len(results_c)
print(f"Accuracy for all the {len(results_c)} questions is {acc}")
print(f"Cost for all the {len(results_c)} questions is {sum(costs)}")
print(f"Consume time for all the {len(results_c)} questions is {sum(time_cost)}")
print()
print(f"Accuracy for each challenge is {score4cha}")
print(f"Average accuracy for {len(score4cha)} challenge is {sum(score4cha)/len(score4cha)}")