Delete data_modeling/show_results.py
Browse files
data_modeling/show_results.py
DELETED
@@ -1,71 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import json
|
3 |
-
from tqdm.notebook import tqdm
|
4 |
-
import time
|
5 |
-
|
6 |
-
data = []
|
7 |
-
with open("./data.json", "r") as f:
|
8 |
-
for line in f:
|
9 |
-
data.append(eval(line))
|
10 |
-
|
11 |
-
|
12 |
-
# model = 'gpt-4-turbo'
|
13 |
-
# model = 'gpt-4o'
|
14 |
-
# model = 'gpt-3.5-turbo-0125'
|
15 |
-
# model = 'baseline'
|
16 |
-
|
17 |
-
model = 'gpt-3.5-turbo-0125'
|
18 |
-
# model = 'gpt-4o-2024-05-13'
|
19 |
-
# model = 'gpt-3.5-turbo-0125-autoagent'
|
20 |
-
# model = 'gpt-4o-2024-05-13-autoagent'
|
21 |
-
# model = 'llama3-autoagent'
|
22 |
-
|
23 |
-
path = "./save_performance/"
|
24 |
-
baseline_path = f'{path}baseline'
|
25 |
-
save_path = f'{path}{model}'
|
26 |
-
gt_path = f"{path}GT"
|
27 |
-
|
28 |
-
output_path = f"./output_model/{model}"
|
29 |
-
|
30 |
-
task_complete = 0
|
31 |
-
|
32 |
-
scores = []
|
33 |
-
all_costs = []
|
34 |
-
all_times = []
|
35 |
-
for line in data:
|
36 |
-
flag = False ## whetehr bigger is better
|
37 |
-
with open(os.path.join(gt_path, line['name'], "result.txt"), "r") as f:
|
38 |
-
gt = eval(f.read().strip())
|
39 |
-
with open(os.path.join(output_path, f"{line['name']}.json"), "r") as f:
|
40 |
-
record = eval(f.read().strip())
|
41 |
-
all_costs.append(record['cost'])
|
42 |
-
all_times.append(record['time'])
|
43 |
-
with open(os.path.join(baseline_path, line['name'], "result.txt"), "r") as f:
|
44 |
-
bl = eval(f.read().strip())
|
45 |
-
if gt > bl:
|
46 |
-
flag = True
|
47 |
-
# print(f"{line['name']} gt {gt} baseline {bl}")
|
48 |
-
# print(line['name'])
|
49 |
-
|
50 |
-
if not os.path.exists(os.path.join(save_path, line['name'], "result.txt")):
|
51 |
-
scores.append(0)
|
52 |
-
show_pre = "not exists"
|
53 |
-
else:
|
54 |
-
task_complete += 1
|
55 |
-
with open(os.path.join(save_path, line['name'], "result.txt"), "r") as f:
|
56 |
-
pre = f.read().strip()
|
57 |
-
if pre == "nan":
|
58 |
-
show_pre = "nan"
|
59 |
-
scores.append(0)
|
60 |
-
else:
|
61 |
-
pre = eval(pre)
|
62 |
-
sc = max(0, (pre-bl)/(gt-bl))
|
63 |
-
scores.append(sc)
|
64 |
-
show_pre = pre
|
65 |
-
|
66 |
-
# print(f"For the challenge {line['name']}, the performance of the agent {pre}, the performance of GT is {gt}. {sc}")
|
67 |
-
# print(scores)
|
68 |
-
print(f"Task completion rate is {task_complete/len(scores)}")
|
69 |
-
print(f"All the cost is {sum(all_costs)}")
|
70 |
-
print(f"The total time consuming is {sum(all_times)}")
|
71 |
-
print(f"The performance is {sum(scores)/len(scores)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|