liqiang888
commited on
Delete data_modeling/evaluation
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- data_modeling/evaluation/amazon-employee-access-challenge_eval.py +0 -37
- data_modeling/evaluation/bike-sharing-demand_eval.py +0 -29
- data_modeling/evaluation/cat-in-the-dat-ii_eval.py +0 -25
- data_modeling/evaluation/cat-in-the-dat_eval.py +0 -25
- data_modeling/evaluation/commonlitreadabilityprize_eval.py +0 -28
- data_modeling/evaluation/conways-reverse-game-of-life-2020_eval.py +0 -34
- data_modeling/evaluation/covid19-global-forecasting-week-1_eval.py +0 -28
- data_modeling/evaluation/covid19-global-forecasting-week-2_eval.py +0 -28
- data_modeling/evaluation/covid19-global-forecasting-week-3_eval.py +0 -28
- data_modeling/evaluation/covid19-global-forecasting-week-4_eval.py +0 -28
- data_modeling/evaluation/covid19-global-forecasting-week-5_eval.py +0 -28
- data_modeling/evaluation/demand-forecasting-kernels-only_eval.py +0 -30
- data_modeling/evaluation/dont-overfit-ii_eval.py +0 -31
- data_modeling/evaluation/feedback-prize-english-language-learning_eval.py +0 -37
- data_modeling/evaluation/google-quest-challenge_eval.py +0 -45
- data_modeling/evaluation/instant-gratification_eval.py +0 -43
- data_modeling/evaluation/learning-agency-lab-automated-essay-scoring-2_eval.py +0 -45
- data_modeling/evaluation/liverpool-ion-switching_eval.py +0 -46
- data_modeling/evaluation/lmsys-chatbot-arena_eval.py +0 -42
- data_modeling/evaluation/microsoft-malware-prediction_eval.py +0 -44
- data_modeling/evaluation/nlp-getting-started_eval.py +0 -37
- data_modeling/evaluation/playground-series-s3e10_eval.py +0 -32
- data_modeling/evaluation/playground-series-s3e11_eval.py +0 -27
- data_modeling/evaluation/playground-series-s3e12_eval.py +0 -35
- data_modeling/evaluation/playground-series-s3e13_eval.py +0 -57
- data_modeling/evaluation/playground-series-s3e14_eval.py +0 -30
- data_modeling/evaluation/playground-series-s3e16_eval.py +0 -33
- data_modeling/evaluation/playground-series-s3e17_eval.py +0 -29
- data_modeling/evaluation/playground-series-s3e18_eval.py +0 -29
- data_modeling/evaluation/playground-series-s3e19_eval.py +0 -34
- data_modeling/evaluation/playground-series-s3e1_eval.py +0 -38
- data_modeling/evaluation/playground-series-s3e20_eval.py +0 -36
- data_modeling/evaluation/playground-series-s3e22_eval.py +0 -45
- data_modeling/evaluation/playground-series-s3e23_eval.py +0 -37
- data_modeling/evaluation/playground-series-s3e24_eval.py +0 -32
- data_modeling/evaluation/playground-series-s3e25_eval.py +0 -29
- data_modeling/evaluation/playground-series-s3e2_eval.py +0 -26
- data_modeling/evaluation/playground-series-s3e3_eval.py +0 -35
- data_modeling/evaluation/playground-series-s3e4_eval.py +0 -26
- data_modeling/evaluation/playground-series-s3e5_eval.py +0 -61
- data_modeling/evaluation/playground-series-s3e6_eval.py +0 -28
- data_modeling/evaluation/playground-series-s3e7_eval.py +0 -30
- data_modeling/evaluation/playground-series-s3e8_eval.py +0 -26
- data_modeling/evaluation/playground-series-s3e9_eval.py +0 -42
- data_modeling/evaluation/playground-series-s4e1_eval.py +0 -29
- data_modeling/evaluation/playground-series-s4e2_eval.py +0 -37
- data_modeling/evaluation/playground-series-s4e3_eval.py +0 -50
- data_modeling/evaluation/playground-series-s4e4_eval.py +0 -29
- data_modeling/evaluation/playground-series-s4e5_eval.py +0 -30
- data_modeling/evaluation/playground-series-s4e6_eval.py +0 -31
data_modeling/evaluation/amazon-employee-access-challenge_eval.py
DELETED
@@ -1,37 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import os.path
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import pandas as pd
|
7 |
-
import argparse
|
8 |
-
|
9 |
-
from sklearn.metrics import roc_auc_score
|
10 |
-
|
11 |
-
parser = argparse.ArgumentParser()
|
12 |
-
|
13 |
-
parser.add_argument('--path', type=str, required=True)
|
14 |
-
parser.add_argument('--name', type=str, required=True)
|
15 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
16 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
17 |
-
|
18 |
-
parser.add_argument('--value', type=str, default="ACTION")
|
19 |
-
|
20 |
-
args = parser.parse_args()
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
# 定义 RMSLE 计算函数
|
25 |
-
def rmsle(y_true, y_pred):
|
26 |
-
return np.sqrt(np.mean((np.log1p(y_pred) - np.log1p(y_true)) ** 2))
|
27 |
-
|
28 |
-
|
29 |
-
actual = pd.read_csv(args.answer_file)
|
30 |
-
submission = pd.read_csv(args.predict_file)
|
31 |
-
|
32 |
-
performance = roc_auc_score(actual[args.value], submission[args.value])
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
37 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/bike-sharing-demand_eval.py
DELETED
@@ -1,29 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
|
7 |
-
# 计算RMSLE
|
8 |
-
def rmsle(predicted, actual):
|
9 |
-
sum_log_diff = np.sum((np.log(predicted + 1) - np.log(actual + 1)) ** 2)
|
10 |
-
mean_log_diff = sum_log_diff / len(predicted)
|
11 |
-
return np.sqrt(mean_log_diff)
|
12 |
-
|
13 |
-
parser = argparse.ArgumentParser()
|
14 |
-
parser.add_argument('--path', type=str, required=True)
|
15 |
-
parser.add_argument('--name', type=str, required=True)
|
16 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
17 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
18 |
-
|
19 |
-
parser.add_argument('--value', type=str, default="count")
|
20 |
-
|
21 |
-
args = parser.parse_args()
|
22 |
-
|
23 |
-
answers = pd.read_csv( args.answer_file)
|
24 |
-
predictions = pd.read_csv(args.predict_file)
|
25 |
-
|
26 |
-
performance = rmsle(predictions[args.value], answers[args.value])
|
27 |
-
|
28 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
29 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/cat-in-the-dat-ii_eval.py
DELETED
@@ -1,25 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
from sklearn.metrics import roc_auc_score
|
7 |
-
|
8 |
-
|
9 |
-
parser = argparse.ArgumentParser()
|
10 |
-
parser.add_argument('--path', type=str, required=True)
|
11 |
-
parser.add_argument('--name', type=str, required=True)
|
12 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
13 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
14 |
-
|
15 |
-
parser.add_argument('--value', type=str, default="target")
|
16 |
-
|
17 |
-
args = parser.parse_args()
|
18 |
-
|
19 |
-
answers = pd.read_csv( args.answer_file)
|
20 |
-
predictions = pd.read_csv(args.predict_file)
|
21 |
-
|
22 |
-
performance = roc_auc_score(answers[args.value], predictions[args.value])
|
23 |
-
|
24 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
25 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/cat-in-the-dat_eval.py
DELETED
@@ -1,25 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
from sklearn.metrics import roc_auc_score
|
7 |
-
|
8 |
-
|
9 |
-
parser = argparse.ArgumentParser()
|
10 |
-
parser.add_argument('--path', type=str, required=True)
|
11 |
-
parser.add_argument('--name', type=str, required=True)
|
12 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
13 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
14 |
-
|
15 |
-
parser.add_argument('--value', type=str, default="target")
|
16 |
-
|
17 |
-
args = parser.parse_args()
|
18 |
-
|
19 |
-
answers = pd.read_csv(args.answer_file)
|
20 |
-
predictions = pd.read_csv( args.predict_file)
|
21 |
-
|
22 |
-
performance = roc_auc_score(answers[args.value], predictions[args.value])
|
23 |
-
|
24 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
25 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/commonlitreadabilityprize_eval.py
DELETED
@@ -1,28 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
|
7 |
-
|
8 |
-
parser = argparse.ArgumentParser()
|
9 |
-
|
10 |
-
parser.add_argument('--path', type=str, required=True)
|
11 |
-
parser.add_argument('--name', type=str, required=True)
|
12 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
13 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
14 |
-
|
15 |
-
parser.add_argument('--value', type=str, default="target")
|
16 |
-
|
17 |
-
args = parser.parse_args()
|
18 |
-
|
19 |
-
def rmse(targets, predictions):
|
20 |
-
return np.sqrt(((predictions - targets) ** 2).mean())
|
21 |
-
|
22 |
-
answers = pd.read_csv( args.answer_file)
|
23 |
-
predictions = pd.read_csv( args.predict_file)
|
24 |
-
|
25 |
-
performance = rmse(answers[args.value], predictions[args.value])
|
26 |
-
|
27 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
28 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/conways-reverse-game-of-life-2020_eval.py
DELETED
@@ -1,34 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import os.path
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import pandas as pd
|
7 |
-
import argparse
|
8 |
-
|
9 |
-
from sklearn.metrics import roc_auc_score
|
10 |
-
|
11 |
-
parser = argparse.ArgumentParser()
|
12 |
-
|
13 |
-
parser.add_argument('--path', type=str, required=True)
|
14 |
-
parser.add_argument('--name', type=str, required=True)
|
15 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
16 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
17 |
-
|
18 |
-
parser.add_argument('--value', type=str, default="generated")
|
19 |
-
|
20 |
-
args = parser.parse_args()
|
21 |
-
|
22 |
-
actual = pd.read_csv( args.answer_file)
|
23 |
-
submission = pd.read_csv(args.predict_file)
|
24 |
-
|
25 |
-
# 移除id列,剩下的是矩阵的值
|
26 |
-
submission_values = submission.drop(columns=['id']).values
|
27 |
-
actual_values = actual.drop(columns=['id']).values
|
28 |
-
|
29 |
-
# 计算平均绝对误差
|
30 |
-
performance = np.mean(np.abs(submission_values - actual_values))
|
31 |
-
|
32 |
-
|
33 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
34 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/covid19-global-forecasting-week-1_eval.py
DELETED
@@ -1,28 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
|
7 |
-
def rmsle(predictions, actuals):
|
8 |
-
rmsle_confirmed = np.sqrt(np.mean((np.log1p(predictions['ConfirmedCases']) - np.log1p(actuals['ConfirmedCases'])) ** 2))
|
9 |
-
rmsle_fatalities = np.sqrt(np.mean((np.log1p(predictions['Fatalities']) - np.log1p(actuals['Fatalities'])) ** 2))
|
10 |
-
return (rmsle_confirmed + rmsle_fatalities) / 2
|
11 |
-
|
12 |
-
parser = argparse.ArgumentParser()
|
13 |
-
parser.add_argument('--path', type=str, required=True)
|
14 |
-
parser.add_argument('--name', type=str, required=True)
|
15 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
16 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
17 |
-
|
18 |
-
parser.add_argument('--value', type=str, default="count")
|
19 |
-
|
20 |
-
args = parser.parse_args()
|
21 |
-
|
22 |
-
answers = pd.read_csv( args.answer_file)
|
23 |
-
predictions = pd.read_csv( args.predict_file)
|
24 |
-
|
25 |
-
performance = rmsle(predictions, answers)
|
26 |
-
|
27 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
28 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/covid19-global-forecasting-week-2_eval.py
DELETED
@@ -1,28 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
|
7 |
-
def rmsle(predictions, actuals):
|
8 |
-
rmsle_confirmed = np.sqrt(np.mean((np.log1p(predictions['ConfirmedCases']) - np.log1p(actuals['ConfirmedCases'])) ** 2))
|
9 |
-
rmsle_fatalities = np.sqrt(np.mean((np.log1p(predictions['Fatalities']) - np.log1p(actuals['Fatalities'])) ** 2))
|
10 |
-
return (rmsle_confirmed + rmsle_fatalities) / 2
|
11 |
-
|
12 |
-
parser = argparse.ArgumentParser()
|
13 |
-
parser.add_argument('--path', type=str, required=True)
|
14 |
-
parser.add_argument('--name', type=str, required=True)
|
15 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
16 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
17 |
-
|
18 |
-
parser.add_argument('--value', type=str, default="count")
|
19 |
-
|
20 |
-
args = parser.parse_args()
|
21 |
-
|
22 |
-
answers = pd.read_csv(os.path.join(args.path, args.name, args.answer_file))
|
23 |
-
predictions = pd.read_csv(os.path.join(args.path, args.name, args.predict_file))
|
24 |
-
|
25 |
-
performance = rmsle(predictions, answers)
|
26 |
-
|
27 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
28 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/covid19-global-forecasting-week-3_eval.py
DELETED
@@ -1,28 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
|
7 |
-
def rmsle(predictions, actuals):
|
8 |
-
rmsle_confirmed = np.sqrt(np.mean((np.log1p(predictions['ConfirmedCases']) - np.log1p(actuals['ConfirmedCases'])) ** 2))
|
9 |
-
rmsle_fatalities = np.sqrt(np.mean((np.log1p(predictions['Fatalities']) - np.log1p(actuals['Fatalities'])) ** 2))
|
10 |
-
return (rmsle_confirmed + rmsle_fatalities) / 2
|
11 |
-
|
12 |
-
parser = argparse.ArgumentParser()
|
13 |
-
parser.add_argument('--path', type=str, required=True)
|
14 |
-
parser.add_argument('--name', type=str, required=True)
|
15 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
16 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
17 |
-
|
18 |
-
parser.add_argument('--value', type=str, default="count")
|
19 |
-
|
20 |
-
args = parser.parse_args()
|
21 |
-
|
22 |
-
answers = pd.read_csv(os.path.join(args.path, args.name, args.answer_file))
|
23 |
-
predictions = pd.read_csv(os.path.join(args.path, args.name, args.predict_file))
|
24 |
-
|
25 |
-
performance = rmsle(predictions, answers)
|
26 |
-
|
27 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
28 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/covid19-global-forecasting-week-4_eval.py
DELETED
@@ -1,28 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
|
7 |
-
def rmsle(predictions, actuals):
|
8 |
-
rmsle_confirmed = np.sqrt(np.mean((np.log1p(predictions['ConfirmedCases']) - np.log1p(actuals['ConfirmedCases'])) ** 2))
|
9 |
-
rmsle_fatalities = np.sqrt(np.mean((np.log1p(predictions['Fatalities']) - np.log1p(actuals['Fatalities'])) ** 2))
|
10 |
-
return (rmsle_confirmed + rmsle_fatalities) / 2
|
11 |
-
|
12 |
-
parser = argparse.ArgumentParser()
|
13 |
-
parser.add_argument('--path', type=str, required=True)
|
14 |
-
parser.add_argument('--name', type=str, required=True)
|
15 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
16 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
17 |
-
|
18 |
-
parser.add_argument('--value', type=str, default="count")
|
19 |
-
|
20 |
-
args = parser.parse_args()
|
21 |
-
|
22 |
-
answers = pd.read_csv(os.path.join(args.path, args.name, args.answer_file))
|
23 |
-
predictions = pd.read_csv(os.path.join(args.path, args.name, args.predict_file))
|
24 |
-
|
25 |
-
performance = rmsle(predictions, answers)
|
26 |
-
|
27 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
28 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/covid19-global-forecasting-week-5_eval.py
DELETED
@@ -1,28 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
|
7 |
-
def rmsle(predictions, actuals):
|
8 |
-
rmsle_confirmed = np.sqrt(np.mean((np.log1p(predictions['ConfirmedCases']) - np.log1p(actuals['ConfirmedCases'])) ** 2))
|
9 |
-
rmsle_fatalities = np.sqrt(np.mean((np.log1p(predictions['Fatalities']) - np.log1p(actuals['Fatalities'])) ** 2))
|
10 |
-
return (rmsle_confirmed + rmsle_fatalities) / 2
|
11 |
-
|
12 |
-
parser = argparse.ArgumentParser()
|
13 |
-
parser.add_argument('--path', type=str, required=True)
|
14 |
-
parser.add_argument('--name', type=str, required=True)
|
15 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
16 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
17 |
-
|
18 |
-
parser.add_argument('--value', type=str, default="count")
|
19 |
-
|
20 |
-
args = parser.parse_args()
|
21 |
-
|
22 |
-
answers = pd.read_csv(os.path.join(args.path, args.name, args.answer_file))
|
23 |
-
predictions = pd.read_csv(os.path.join(args.path, args.name, args.predict_file))
|
24 |
-
|
25 |
-
performance = rmsle(predictions, answers)
|
26 |
-
|
27 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
28 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/demand-forecasting-kernels-only_eval.py
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
# 定义 SMAPE 计算函数
|
7 |
-
def smape(y_true, y_pred):
|
8 |
-
return 100/len(y_true) * np.sum(2 * np.abs(y_pred - y_true) / (np.abs(y_true) + np.abs(y_pred)))
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
parser = argparse.ArgumentParser()
|
13 |
-
|
14 |
-
parser.add_argument('--path', type=str, required=True)
|
15 |
-
parser.add_argument('--name', type=str, required=True)
|
16 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
17 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
18 |
-
|
19 |
-
parser.add_argument('--value', type=str, default="sales")
|
20 |
-
|
21 |
-
args = parser.parse_args()
|
22 |
-
|
23 |
-
|
24 |
-
answers = pd.read_csv(args.answer_file)
|
25 |
-
predictions = pd.read_csv(args.predict_file)
|
26 |
-
|
27 |
-
performance = smape(answers[args.value], predictions[args.value])
|
28 |
-
|
29 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
30 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/dont-overfit-ii_eval.py
DELETED
@@ -1,31 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import os.path
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import pandas as pd
|
7 |
-
import argparse
|
8 |
-
|
9 |
-
from sklearn.metrics import roc_auc_score
|
10 |
-
|
11 |
-
parser = argparse.ArgumentParser()
|
12 |
-
|
13 |
-
parser.add_argument('--path', type=str, required=True)
|
14 |
-
parser.add_argument('--name', type=str, required=True)
|
15 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
16 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
17 |
-
|
18 |
-
parser.add_argument('--value', type=str, default="target")
|
19 |
-
|
20 |
-
args = parser.parse_args()
|
21 |
-
|
22 |
-
actual = pd.read_csv(os.path.join(args.path, args.name, args.answer_file))
|
23 |
-
submission = pd.read_csv(os.path.join(args.path, args.name, args.predict_file))
|
24 |
-
|
25 |
-
|
26 |
-
# 计算平均绝对误差
|
27 |
-
performance = roc_auc_score(actual[args.value], submission[args.value])
|
28 |
-
|
29 |
-
|
30 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
31 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/feedback-prize-english-language-learning_eval.py
DELETED
@@ -1,37 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
from sklearn.metrics import roc_auc_score
|
7 |
-
|
8 |
-
parser = argparse.ArgumentParser()
|
9 |
-
|
10 |
-
parser.add_argument('--path', type=str, required=True)
|
11 |
-
parser.add_argument('--name', type=str, required=True)
|
12 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
13 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
14 |
-
parser.add_argument('--value', type=str, default="place_id")
|
15 |
-
|
16 |
-
args = parser.parse_args()
|
17 |
-
|
18 |
-
actual = pd.read_csv(os.path.join(args.path, args.name, args.answer_file))
|
19 |
-
submission = pd.read_csv(os.path.join(args.path, args.name, args.predict_file))
|
20 |
-
|
21 |
-
def mcrmse(y_true, y_pred):
|
22 |
-
"""
|
23 |
-
计算Mean Columnwise Root Mean Squared Error (MCRMSE)
|
24 |
-
"""
|
25 |
-
assert y_true.shape == y_pred.shape, "The shapes of true and predicted values do not match"
|
26 |
-
columnwise_rmse = np.sqrt(((y_true - y_pred) ** 2).mean(axis=0))
|
27 |
-
return columnwise_rmse.mean()
|
28 |
-
|
29 |
-
# 提取实际标签和预测结果
|
30 |
-
actual_values = actual.iloc[:, 1:].values # 假设实际标签文件中第一列是text_id,后面是实际标签值
|
31 |
-
predicted_values = submission.iloc[:, 1:].values # 假设提交文件中第一列是text_id,后面是预测标签值
|
32 |
-
|
33 |
-
# 计算MAP@3
|
34 |
-
performance = mcrmse(actual_values, predicted_values)
|
35 |
-
|
36 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
37 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/google-quest-challenge_eval.py
DELETED
@@ -1,45 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import os.path
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import pandas as pd
|
7 |
-
import argparse
|
8 |
-
from scipy.stats import spearmanr
|
9 |
-
|
10 |
-
from sklearn.metrics import roc_auc_score
|
11 |
-
|
12 |
-
parser = argparse.ArgumentParser()
|
13 |
-
|
14 |
-
parser.add_argument('--path', type=str, required=True)
|
15 |
-
parser.add_argument('--name', type=str, required=True)
|
16 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
17 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
18 |
-
|
19 |
-
parser.add_argument('--value', type=str, default="place_id")
|
20 |
-
|
21 |
-
args = parser.parse_args()
|
22 |
-
|
23 |
-
actual = pd.read_csv(os.path.join(args.path, args.name, args.answer_file))
|
24 |
-
submission = pd.read_csv(os.path.join(args.path, args.name, args.predict_file))
|
25 |
-
def mean_spearmanr(y_true, y_pred):
|
26 |
-
"""
|
27 |
-
计算每列的Spearman's rank correlation coefficient,并取平均值
|
28 |
-
"""
|
29 |
-
assert y_true.shape == y_pred.shape, "The shapes of true and predicted values do not match"
|
30 |
-
correlations = []
|
31 |
-
for col in range(y_true.shape[1]):
|
32 |
-
corr, _ = spearmanr(y_true[:, col], y_pred[:, col])
|
33 |
-
correlations.append(corr)
|
34 |
-
return sum(correlations) / len(correlations)
|
35 |
-
|
36 |
-
|
37 |
-
# 提取实际标签和预测结果
|
38 |
-
actual_values = actual.iloc[:, 1:].values # 假设实际标签文件中第一列是qa_id,后面是实际标签值
|
39 |
-
predicted_values = submission.iloc[:, 1:].values # 假设提交文件中第一列是qa_id,后面是预测标签值
|
40 |
-
# 计算MAP@3
|
41 |
-
performance = mean_spearmanr(actual_values, predicted_values)
|
42 |
-
|
43 |
-
|
44 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
45 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/instant-gratification_eval.py
DELETED
@@ -1,43 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import os.path
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import pandas as pd
|
7 |
-
import argparse
|
8 |
-
|
9 |
-
from sklearn.metrics import roc_auc_score
|
10 |
-
|
11 |
-
parser = argparse.ArgumentParser()
|
12 |
-
|
13 |
-
parser.add_argument('--path', type=str, required=True)
|
14 |
-
parser.add_argument('--name', type=str, required=True)
|
15 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
16 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
17 |
-
|
18 |
-
parser.add_argument('--value', type=str, default="target")
|
19 |
-
|
20 |
-
args = parser.parse_args()
|
21 |
-
|
22 |
-
# Compute MAE
|
23 |
-
def mean_absolute_error(y_true, y_pred):
|
24 |
-
return np.mean(np.abs(y_pred - y_true))
|
25 |
-
|
26 |
-
|
27 |
-
answers = pd.read_csv(args.answer_file)
|
28 |
-
predictions = pd.read_csv(args.predict_file)
|
29 |
-
|
30 |
-
y_true = answers[args.value].values
|
31 |
-
y_pred = predictions[args.value].values
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
performance = roc_auc_score(y_true, y_pred)
|
37 |
-
|
38 |
-
|
39 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
40 |
-
f.write(str(performance))
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/learning-agency-lab-automated-essay-scoring-2_eval.py
DELETED
@@ -1,45 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import os.path
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import pandas as pd
|
7 |
-
import argparse
|
8 |
-
|
9 |
-
from sklearn.metrics import roc_auc_score
|
10 |
-
from sklearn.metrics import cohen_kappa_score
|
11 |
-
|
12 |
-
parser = argparse.ArgumentParser()
|
13 |
-
|
14 |
-
parser.add_argument('--path', type=str, required=True)
|
15 |
-
parser.add_argument('--name', type=str, required=True)
|
16 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
17 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
18 |
-
|
19 |
-
parser.add_argument('--value', type=str, default="score")
|
20 |
-
|
21 |
-
args = parser.parse_args()
|
22 |
-
|
23 |
-
# Compute MAE
|
24 |
-
def mean_absolute_error(y_true, y_pred):
|
25 |
-
return np.mean(np.abs(y_pred - y_true))
|
26 |
-
|
27 |
-
|
28 |
-
answers = pd.read_csv(args.answer_file)
|
29 |
-
predictions = pd.read_csv( args.predict_file)
|
30 |
-
|
31 |
-
answers = answers.sort_values('essay_id')
|
32 |
-
predictions = predictions.sort_values('essay_id')
|
33 |
-
|
34 |
-
|
35 |
-
y_true = answers[args.value].values
|
36 |
-
y_pred = predictions[args.value].values
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
performance = cohen_kappa_score(y_true, y_pred, weights='quadratic')
|
42 |
-
|
43 |
-
|
44 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
45 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/liverpool-ion-switching_eval.py
DELETED
@@ -1,46 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import os.path
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import pandas as pd
|
7 |
-
import argparse
|
8 |
-
|
9 |
-
from sklearn.metrics import roc_auc_score
|
10 |
-
from sklearn.metrics import cohen_kappa_score
|
11 |
-
from sklearn.metrics import f1_score
|
12 |
-
|
13 |
-
parser = argparse.ArgumentParser()
|
14 |
-
|
15 |
-
parser.add_argument('--path', type=str, required=True)
|
16 |
-
parser.add_argument('--name', type=str, required=True)
|
17 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
18 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
19 |
-
|
20 |
-
parser.add_argument('--value', type=str, default="open_channels")
|
21 |
-
|
22 |
-
args = parser.parse_args()
|
23 |
-
|
24 |
-
# Compute MAE
|
25 |
-
def mean_absolute_error(y_true, y_pred):
|
26 |
-
return np.mean(np.abs(y_pred - y_true))
|
27 |
-
|
28 |
-
|
29 |
-
answers = pd.read_csv( args.answer_file)
|
30 |
-
predictions = pd.read_csv(args.predict_file)
|
31 |
-
|
32 |
-
answers = answers.sort_values('time')
|
33 |
-
predictions = predictions.sort_values('time')
|
34 |
-
|
35 |
-
|
36 |
-
y_true = answers[args.value].values
|
37 |
-
y_pred = predictions[args.value].values
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
performance = f1_score(y_true, y_pred, average='macro')
|
43 |
-
|
44 |
-
|
45 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
46 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/lmsys-chatbot-arena_eval.py
DELETED
@@ -1,42 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import os.path
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import pandas as pd
|
7 |
-
import argparse
|
8 |
-
from sklearn.metrics import log_loss
|
9 |
-
|
10 |
-
from sklearn.metrics import roc_auc_score
|
11 |
-
from sklearn.metrics import cohen_kappa_score
|
12 |
-
|
13 |
-
parser = argparse.ArgumentParser()
|
14 |
-
|
15 |
-
parser.add_argument('--path', type=str, required=True)
|
16 |
-
parser.add_argument('--name', type=str, required=True)
|
17 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
18 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
19 |
-
|
20 |
-
parser.add_argument('--value', type=str, default="score")
|
21 |
-
|
22 |
-
args = parser.parse_args()
|
23 |
-
|
24 |
-
# Compute MAE
|
25 |
-
def mean_absolute_error(y_true, y_pred):
|
26 |
-
return np.mean(np.abs(y_pred - y_true))
|
27 |
-
|
28 |
-
|
29 |
-
actual = pd.read_csv( args.answer_file)
|
30 |
-
submission = pd.read_csv(args.predict_file)
|
31 |
-
|
32 |
-
# 提取实际值和预测值
|
33 |
-
actual_values = actual[['winner_model_a', 'winner_model_b', 'winner_tie']].values
|
34 |
-
predicted_values = submission[['winner_model_a', 'winner_model_b', 'winner_tie']].values
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
performance = log_loss(actual_values, predicted_values)
|
39 |
-
|
40 |
-
|
41 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
42 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/microsoft-malware-prediction_eval.py
DELETED
@@ -1,44 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import os.path
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import pandas as pd
|
7 |
-
import argparse
|
8 |
-
|
9 |
-
from sklearn.metrics import roc_auc_score
|
10 |
-
|
11 |
-
parser = argparse.ArgumentParser()
|
12 |
-
|
13 |
-
parser.add_argument('--path', type=str, required=True)
|
14 |
-
parser.add_argument('--name', type=str, required=True)
|
15 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
16 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
17 |
-
|
18 |
-
parser.add_argument('--value', type=str, default="HasDetections")
|
19 |
-
|
20 |
-
args = parser.parse_args()
|
21 |
-
|
22 |
-
# Compute MAE
|
23 |
-
def mean_absolute_error(y_true, y_pred):
|
24 |
-
return np.mean(np.abs(y_pred - y_true))
|
25 |
-
|
26 |
-
|
27 |
-
answers = pd.read_csv(args.answer_file)
|
28 |
-
predictions = pd.read_csv(args.predict_file)
|
29 |
-
answers.sort_values(by=["MachineIdentifier"])
|
30 |
-
predictions.sort_values(by=['MachineIdentifier'])
|
31 |
-
y_true = answers[args.value].values
|
32 |
-
y_pred = predictions[args.value].values
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
performance = roc_auc_score(y_true, y_pred)
|
38 |
-
|
39 |
-
|
40 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
41 |
-
f.write(str(performance))
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/nlp-getting-started_eval.py
DELETED
@@ -1,37 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
from sklearn.metrics import f1_score
|
7 |
-
|
8 |
-
|
9 |
-
# 计算多类对数损失
|
10 |
-
def multiclass_logloss(actuals, predictions):
|
11 |
-
epsilon = 1e-15 # 避免对数运算中的数值问题
|
12 |
-
predictions = np.clip(predictions, epsilon, 1 - epsilon) # 限制预测概率的范围,防止对数为无穷
|
13 |
-
predictions /= predictions.sum(axis=1)[:, np.newaxis] # 归一化确保总和为1
|
14 |
-
log_pred = np.log(predictions)
|
15 |
-
loss = -np.sum(actuals * log_pred) / len(actuals)
|
16 |
-
return loss
|
17 |
-
|
18 |
-
|
19 |
-
parser = argparse.ArgumentParser()
|
20 |
-
|
21 |
-
parser.add_argument('--path', type=str, required=True)
|
22 |
-
parser.add_argument('--name', type=str, required=True)
|
23 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
24 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
25 |
-
|
26 |
-
parser.add_argument('--value', type=str, default="target")
|
27 |
-
|
28 |
-
args = parser.parse_args()
|
29 |
-
|
30 |
-
|
31 |
-
answers = pd.read_csv( args.answer_file)
|
32 |
-
predictions = pd.read_csv( args.predict_file)
|
33 |
-
|
34 |
-
performance = f1_score(answers[args.value], predictions[args.value])
|
35 |
-
|
36 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
37 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/playground-series-s3e10_eval.py
DELETED
@@ -1,32 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
from sklearn.metrics import mean_squared_error
|
7 |
-
from sklearn.metrics import log_loss
|
8 |
-
|
9 |
-
|
10 |
-
parser = argparse.ArgumentParser()
|
11 |
-
|
12 |
-
parser.add_argument('--path', type=str, required=True)
|
13 |
-
parser.add_argument('--name', type=str, required=True)
|
14 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
15 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
16 |
-
|
17 |
-
parser.add_argument('--value', type=str, default="Class")
|
18 |
-
|
19 |
-
args = parser.parse_args()
|
20 |
-
|
21 |
-
answers = pd.read_csv( args.answer_file)
|
22 |
-
predictions = pd.read_csv( args.predict_file)
|
23 |
-
answers.sort_values(by=['id'])
|
24 |
-
predictions.sort_values(by=['id'])
|
25 |
-
if "Strength" in predictions:
|
26 |
-
performance = log_loss(answers[args.value], predictions["Strength"])
|
27 |
-
else:
|
28 |
-
performance = log_loss(answers[args.value], predictions[args.value])
|
29 |
-
|
30 |
-
|
31 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
32 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/playground-series-s3e11_eval.py
DELETED
@@ -1,27 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
from sklearn.metrics import mean_squared_error
|
7 |
-
from sklearn.metrics import mean_squared_log_error
|
8 |
-
|
9 |
-
|
10 |
-
parser = argparse.ArgumentParser()
|
11 |
-
|
12 |
-
parser.add_argument('--path', type=str, required=True)
|
13 |
-
parser.add_argument('--name', type=str, required=True)
|
14 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
15 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
16 |
-
|
17 |
-
parser.add_argument('--value', type=str, default="cost")
|
18 |
-
|
19 |
-
args = parser.parse_args()
|
20 |
-
|
21 |
-
answers = pd.read_csv(args.answer_file)
|
22 |
-
predictions = pd.read_csv( args.predict_file)
|
23 |
-
|
24 |
-
performance = np.sqrt(mean_squared_log_error(answers[args.value], predictions[args.value]))
|
25 |
-
|
26 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
27 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/playground-series-s3e12_eval.py
DELETED
@@ -1,35 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import os.path
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import pandas as pd
|
7 |
-
import argparse
|
8 |
-
|
9 |
-
from sklearn.metrics import roc_auc_score
|
10 |
-
|
11 |
-
parser = argparse.ArgumentParser()
|
12 |
-
|
13 |
-
parser.add_argument('--path', type=str, required=True)
|
14 |
-
parser.add_argument('--name', type=str, required=True)
|
15 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
16 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
17 |
-
|
18 |
-
parser.add_argument('--value', type=str, default="target")
|
19 |
-
|
20 |
-
args = parser.parse_args()
|
21 |
-
|
22 |
-
|
23 |
-
actual = pd.read_csv(args.answer_file)
|
24 |
-
submission = pd.read_csv(args.predict_file)
|
25 |
-
|
26 |
-
actual.sort_values(by=['id'])
|
27 |
-
submission.sort_values(by=['id'])
|
28 |
-
|
29 |
-
# 计算平均错误率
|
30 |
-
performance = roc_auc_score(actual[args.value], submission[args.value])
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
35 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/playground-series-s3e13_eval.py
DELETED
@@ -1,57 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import os.path
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import pandas as pd
|
7 |
-
import argparse
|
8 |
-
|
9 |
-
from sklearn.metrics import roc_auc_score
|
10 |
-
|
11 |
-
parser = argparse.ArgumentParser()
|
12 |
-
|
13 |
-
parser.add_argument('--path', default='', type=str, required=False)
|
14 |
-
parser.add_argument('--name', default='', type=str, required=False)
|
15 |
-
parser.add_argument('--answer_file', default='/Users/tencentintern/PycharmProjects/DSBench/kaggle_data/data_filted_csv/answers/playground-series-s3e13/test_answer.csv', type=str, required=False)
|
16 |
-
parser.add_argument('--predict_file', default='/Users/tencentintern/PycharmProjects/DSBench/kaggle_data/data_filted_csv/answers/playground-series-s3e13/test_answer.csv', type=str, required=False)
|
17 |
-
|
18 |
-
parser.add_argument('--value', type=str, default="prognosis")
|
19 |
-
|
20 |
-
args = parser.parse_args()
|
21 |
-
|
22 |
-
|
23 |
-
actual = pd.read_csv(args.answer_file)
|
24 |
-
submission = pd.read_csv(args.predict_file)
|
25 |
-
|
26 |
-
actual.sort_values(by=['id'])
|
27 |
-
submission.sort_values(by=['id'])
|
28 |
-
|
29 |
-
|
30 |
-
def mpa_at_3(actual, predictions):
|
31 |
-
"""
|
32 |
-
Calculate Mean Percentage Agreement at 3 (MPA@3).
|
33 |
-
|
34 |
-
Parameters:
|
35 |
-
actual (list): List of actual prognosis values.
|
36 |
-
predictions (list of lists): List of lists containing up to 3 predicted prognosis values.
|
37 |
-
|
38 |
-
Returns:
|
39 |
-
float: The MPA@3 score.
|
40 |
-
"""
|
41 |
-
total = len(actual)
|
42 |
-
score = 0.0
|
43 |
-
|
44 |
-
for act, preds in zip(actual, predictions):
|
45 |
-
preds = preds.split()
|
46 |
-
if act in preds[:3]:
|
47 |
-
score += 1
|
48 |
-
|
49 |
-
return score / total
|
50 |
-
|
51 |
-
# 计算平均错误率
|
52 |
-
performance = mpa_at_3(actual[args.value], submission[args.value])
|
53 |
-
print(performance)
|
54 |
-
|
55 |
-
|
56 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
57 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/playground-series-s3e14_eval.py
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
|
7 |
-
|
8 |
-
parser = argparse.ArgumentParser()
|
9 |
-
|
10 |
-
parser.add_argument('--path', type=str, required=True)
|
11 |
-
parser.add_argument('--name', type=str, required=True)
|
12 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
13 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
14 |
-
|
15 |
-
parser.add_argument('--value', type=str, default="yield")
|
16 |
-
|
17 |
-
args = parser.parse_args()
|
18 |
-
|
19 |
-
# Compute MAE
|
20 |
-
def mean_absolute_error(y_true, y_pred):
|
21 |
-
return np.mean(np.abs(y_pred - y_true))
|
22 |
-
|
23 |
-
|
24 |
-
answers = pd.read_csv( args.answer_file)
|
25 |
-
predictions = pd.read_csv( args.predict_file)
|
26 |
-
|
27 |
-
performance = mean_absolute_error(answers[args.value], predictions[args.value])
|
28 |
-
|
29 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
30 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/playground-series-s3e16_eval.py
DELETED
@@ -1,33 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
from sklearn.metrics import mean_squared_error
|
7 |
-
from sklearn.metrics import mean_squared_log_error
|
8 |
-
from sklearn.metrics import mean_absolute_error
|
9 |
-
|
10 |
-
|
11 |
-
parser = argparse.ArgumentParser()
|
12 |
-
|
13 |
-
parser.add_argument('--path', type=str, required=True)
|
14 |
-
parser.add_argument('--name', type=str, required=True)
|
15 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
16 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
17 |
-
|
18 |
-
parser.add_argument('--value', type=str, default="yield")
|
19 |
-
|
20 |
-
args = parser.parse_args()
|
21 |
-
|
22 |
-
answers = pd.read_csv( args.answer_file)
|
23 |
-
predictions = pd.read_csv( args.predict_file)
|
24 |
-
|
25 |
-
answers.sort_values(by=['id'])
|
26 |
-
predictions.sort_values(by=['id'])
|
27 |
-
if 'Age' in predictions:
|
28 |
-
performance = mean_absolute_error(answers['Age'], predictions['Age'])
|
29 |
-
else:
|
30 |
-
performance = mean_absolute_error(answers['Age'], predictions[args.value])
|
31 |
-
|
32 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
33 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/playground-series-s3e17_eval.py
DELETED
@@ -1,29 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
from sklearn.metrics import mean_squared_error
|
7 |
-
from sklearn.metrics import mean_squared_log_error
|
8 |
-
from sklearn.metrics import mean_absolute_error
|
9 |
-
|
10 |
-
from sklearn.metrics import roc_auc_score
|
11 |
-
|
12 |
-
parser = argparse.ArgumentParser()
|
13 |
-
|
14 |
-
parser.add_argument('--path', type=str, required=True)
|
15 |
-
parser.add_argument('--name', type=str, required=True)
|
16 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
17 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
18 |
-
|
19 |
-
parser.add_argument('--value', type=str, default="Machine failure")
|
20 |
-
|
21 |
-
args = parser.parse_args()
|
22 |
-
|
23 |
-
answers = pd.read_csv( args.answer_file)
|
24 |
-
predictions = pd.read_csv( args.predict_file)
|
25 |
-
|
26 |
-
performance = roc_auc_score(answers[args.value], predictions[args.value])
|
27 |
-
|
28 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
29 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/playground-series-s3e18_eval.py
DELETED
@@ -1,29 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
from sklearn.metrics import mean_squared_error
|
7 |
-
from sklearn.metrics import mean_squared_log_error
|
8 |
-
from sklearn.metrics import mean_absolute_error
|
9 |
-
|
10 |
-
from sklearn.metrics import roc_auc_score
|
11 |
-
|
12 |
-
parser = argparse.ArgumentParser()
|
13 |
-
|
14 |
-
parser.add_argument('--path', type=str, required=True)
|
15 |
-
parser.add_argument('--name', type=str, required=True)
|
16 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
17 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
18 |
-
|
19 |
-
parser.add_argument('--value', type=str, default="Machine failure")
|
20 |
-
|
21 |
-
args = parser.parse_args()
|
22 |
-
|
23 |
-
answers = pd.read_csv( args.answer_file)
|
24 |
-
predictions = pd.read_csv(args.predict_file)
|
25 |
-
|
26 |
-
performance = (roc_auc_score(answers['EC1'], predictions['EC1']) + roc_auc_score(answers['EC2'], predictions['EC2'])) / 2
|
27 |
-
|
28 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
29 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/playground-series-s3e19_eval.py
DELETED
@@ -1,34 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
from sklearn.metrics import mean_squared_error
|
7 |
-
from sklearn.metrics import mean_squared_log_error
|
8 |
-
from sklearn.metrics import mean_absolute_error
|
9 |
-
|
10 |
-
from sklearn.metrics import roc_auc_score
|
11 |
-
|
12 |
-
parser = argparse.ArgumentParser()
|
13 |
-
|
14 |
-
parser.add_argument('--path', type=str, required=True)
|
15 |
-
parser.add_argument('--name', type=str, required=True)
|
16 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
17 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
18 |
-
|
19 |
-
parser.add_argument('--value', type=str, default="Machine failure")
|
20 |
-
|
21 |
-
args = parser.parse_args()
|
22 |
-
|
23 |
-
answers = pd.read_csv( args.answer_file)
|
24 |
-
predictions = pd.read_csv( args.predict_file)
|
25 |
-
|
26 |
-
# 提取预测值和实际标签
|
27 |
-
predicted_values = predictions['num_sold'].values
|
28 |
-
actual_values = answers['num_sold'].values # 修改列名为answers
|
29 |
-
|
30 |
-
|
31 |
-
smape = np.mean(2 * np.abs(predicted_values - actual_values) / (np.abs(actual_values) + np.abs(predicted_values)))
|
32 |
-
performance = smape
|
33 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
34 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/playground-series-s3e1_eval.py
DELETED
@@ -1,38 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import os.path
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import pandas as pd
|
7 |
-
import argparse
|
8 |
-
|
9 |
-
from sklearn.metrics import roc_auc_score
|
10 |
-
from sklearn.metrics import mean_squared_error
|
11 |
-
|
12 |
-
parser = argparse.ArgumentParser()
|
13 |
-
|
14 |
-
parser.add_argument('--path', type=str, required=True)
|
15 |
-
parser.add_argument('--name', type=str, required=True)
|
16 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
17 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
18 |
-
|
19 |
-
parser.add_argument('--value', type=str, default="MedHouseVal")
|
20 |
-
|
21 |
-
args = parser.parse_args()
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
# 定义 RMSLE 计算函数
|
26 |
-
def rmsle(y_true, y_pred):
|
27 |
-
return np.sqrt(np.mean((np.log1p(y_pred) - np.log1p(y_true)) ** 2))
|
28 |
-
|
29 |
-
|
30 |
-
actual = pd.read_csv( args.answer_file)
|
31 |
-
submission = pd.read_csv( args.predict_file)
|
32 |
-
|
33 |
-
performance = np.sqrt(mean_squared_error(actual[args.value], submission[args.value]))
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
38 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/playground-series-s3e20_eval.py
DELETED
@@ -1,36 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
from sklearn.metrics import mean_squared_error
|
7 |
-
from sklearn.metrics import mean_squared_log_error
|
8 |
-
from sklearn.metrics import mean_absolute_error
|
9 |
-
from math import sqrt
|
10 |
-
from sklearn.metrics import roc_auc_score
|
11 |
-
|
12 |
-
parser = argparse.ArgumentParser()
|
13 |
-
|
14 |
-
parser.add_argument('--path', type=str, required=True)
|
15 |
-
parser.add_argument('--name', type=str, required=True)
|
16 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
17 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
18 |
-
|
19 |
-
parser.add_argument('--value', type=str, default="Machine failure")
|
20 |
-
|
21 |
-
args = parser.parse_args()
|
22 |
-
|
23 |
-
answers = pd.read_csv( args.answer_file)
|
24 |
-
predictions = pd.read_csv(args.predict_file)
|
25 |
-
|
26 |
-
answers.sort_values(by=['ID_LAT_LON_YEAR_WEEK'])
|
27 |
-
predictions.sort_values(by=['ID_LAT_LON_YEAR_WEEK'])
|
28 |
-
# 提取预测值和实际标签
|
29 |
-
predicted_values = predictions['emission'].values
|
30 |
-
actual_values = answers['emission'].values # 修改列名为answers
|
31 |
-
|
32 |
-
|
33 |
-
smape = sqrt(mean_squared_error(actual_values, predicted_values))
|
34 |
-
performance = smape
|
35 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
36 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/playground-series-s3e22_eval.py
DELETED
@@ -1,45 +0,0 @@
|
|
1 |
-
from sklearn.metrics import f1_score
|
2 |
-
|
3 |
-
|
4 |
-
import os.path
|
5 |
-
|
6 |
-
import numpy as np
|
7 |
-
import pandas as pd
|
8 |
-
import argparse
|
9 |
-
|
10 |
-
from sklearn.metrics import roc_auc_score
|
11 |
-
|
12 |
-
parser = argparse.ArgumentParser()
|
13 |
-
|
14 |
-
parser.add_argument('--path', type=str, required=True)
|
15 |
-
parser.add_argument('--name', type=str, required=True)
|
16 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
17 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
18 |
-
|
19 |
-
parser.add_argument('--value', type=str, default="outcome")
|
20 |
-
|
21 |
-
args = parser.parse_args()
|
22 |
-
|
23 |
-
# Compute MAE
|
24 |
-
def mean_absolute_error(y_true, y_pred):
|
25 |
-
return np.mean(np.abs(y_pred - y_true))
|
26 |
-
|
27 |
-
|
28 |
-
answers = pd.read_csv(args.answer_file)
|
29 |
-
predictions = pd.read_csv(args.predict_file)
|
30 |
-
answers.sort_values(by=["id"])
|
31 |
-
predictions.sort_values(by=['id'])
|
32 |
-
y_true = answers[args.value].values
|
33 |
-
y_pred = predictions[args.value].values
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
performance = f1_score(y_true, y_pred, average='micro')
|
39 |
-
|
40 |
-
|
41 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
42 |
-
f.write(str(performance))
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/playground-series-s3e23_eval.py
DELETED
@@ -1,37 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
from sklearn.metrics import mean_squared_error
|
7 |
-
from sklearn.metrics import mean_squared_log_error
|
8 |
-
from sklearn.metrics import mean_absolute_error
|
9 |
-
|
10 |
-
from sklearn.metrics import roc_auc_score
|
11 |
-
|
12 |
-
parser = argparse.ArgumentParser()
|
13 |
-
|
14 |
-
parser.add_argument('--path', type=str, required=True)
|
15 |
-
parser.add_argument('--name', type=str, required=True)
|
16 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
17 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
18 |
-
|
19 |
-
parser.add_argument('--value', type=str, default="defects")
|
20 |
-
|
21 |
-
args = parser.parse_args()
|
22 |
-
|
23 |
-
answers = pd.read_csv( args.answer_file)
|
24 |
-
predictions = pd.read_csv( args.predict_file)
|
25 |
-
|
26 |
-
answers.sort_values(by=['id'])
|
27 |
-
predictions.sort_values(by=['id'])
|
28 |
-
# 提取预测值和实际标签
|
29 |
-
predicted_values = predictions['defects'].values
|
30 |
-
actual_values = answers['defects'].values # 修改列名为answers
|
31 |
-
|
32 |
-
# 计算RMSE
|
33 |
-
rmse = roc_auc_score(actual_values, predicted_values)
|
34 |
-
|
35 |
-
performance = rmse
|
36 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
37 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/playground-series-s3e24_eval.py
DELETED
@@ -1,32 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
from sklearn.metrics import mean_squared_error
|
7 |
-
from sklearn.metrics import mean_squared_log_error
|
8 |
-
from sklearn.metrics import mean_absolute_error
|
9 |
-
|
10 |
-
from sklearn.metrics import roc_auc_score
|
11 |
-
|
12 |
-
parser = argparse.ArgumentParser()
|
13 |
-
|
14 |
-
parser.add_argument('--path', type=str, required=True)
|
15 |
-
parser.add_argument('--name', type=str, required=True)
|
16 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
17 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
18 |
-
|
19 |
-
parser.add_argument('--value', type=str, default="smoking")
|
20 |
-
|
21 |
-
args = parser.parse_args()
|
22 |
-
|
23 |
-
answers = pd.read_csv(args.answer_file)
|
24 |
-
predictions = pd.read_csv( args.predict_file)
|
25 |
-
|
26 |
-
# 提取预测概率和实际标签
|
27 |
-
predicted_probabilities = predictions['smoking'].values
|
28 |
-
actual_labels = answers['smoking'].values #
|
29 |
-
|
30 |
-
performance = roc_auc_score(actual_labels, predicted_probabilities)
|
31 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
32 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/playground-series-s3e25_eval.py
DELETED
@@ -1,29 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
from sklearn.metrics import roc_auc_score
|
7 |
-
from sklearn.metrics import median_absolute_error
|
8 |
-
|
9 |
-
|
10 |
-
parser = argparse.ArgumentParser()
|
11 |
-
|
12 |
-
parser.add_argument('--path', type=str, required=True)
|
13 |
-
parser.add_argument('--name', type=str, required=True)
|
14 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
15 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
16 |
-
|
17 |
-
parser.add_argument('--value', type=str, default="Hardness")
|
18 |
-
|
19 |
-
args = parser.parse_args()
|
20 |
-
|
21 |
-
answers = pd.read_csv(args.answer_file)
|
22 |
-
predictions = pd.read_csv( args.predict_file)
|
23 |
-
|
24 |
-
performance = median_absolute_error(answers[args.value], predictions[args.value])
|
25 |
-
|
26 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
27 |
-
f.write(str(performance))
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/playground-series-s3e2_eval.py
DELETED
@@ -1,26 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
from sklearn.metrics import roc_auc_score
|
7 |
-
|
8 |
-
|
9 |
-
parser = argparse.ArgumentParser()
|
10 |
-
|
11 |
-
parser.add_argument('--path', type=str, required=True)
|
12 |
-
parser.add_argument('--name', type=str, required=True)
|
13 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
14 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
15 |
-
|
16 |
-
parser.add_argument('--value', type=str, default="stroke")
|
17 |
-
|
18 |
-
args = parser.parse_args()
|
19 |
-
|
20 |
-
answers = pd.read_csv( args.answer_file)
|
21 |
-
predictions = pd.read_csv( args.predict_file)
|
22 |
-
|
23 |
-
performance = roc_auc_score(answers[args.value], predictions[args.value])
|
24 |
-
|
25 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
26 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/playground-series-s3e3_eval.py
DELETED
@@ -1,35 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import os.path
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import pandas as pd
|
7 |
-
import argparse
|
8 |
-
|
9 |
-
from sklearn.metrics import roc_auc_score
|
10 |
-
|
11 |
-
parser = argparse.ArgumentParser()
|
12 |
-
|
13 |
-
parser.add_argument('--path', type=str, required=True)
|
14 |
-
parser.add_argument('--name', type=str, required=True)
|
15 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
16 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
17 |
-
|
18 |
-
parser.add_argument('--value', type=str, default="Attrition")
|
19 |
-
|
20 |
-
args = parser.parse_args()
|
21 |
-
|
22 |
-
|
23 |
-
actual = pd.read_csv(args.answer_file)
|
24 |
-
submission = pd.read_csv(args.predict_file)
|
25 |
-
|
26 |
-
actual.sort_values(by=actual.columns[0])
|
27 |
-
submission.sort_values(by=submission.columns[0])
|
28 |
-
|
29 |
-
# 计算平均错误率
|
30 |
-
performance = roc_auc_score(actual[args.value], submission[args.value])
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
35 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/playground-series-s3e4_eval.py
DELETED
@@ -1,26 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
from sklearn.metrics import roc_auc_score
|
7 |
-
|
8 |
-
|
9 |
-
parser = argparse.ArgumentParser()
|
10 |
-
|
11 |
-
parser.add_argument('--path', type=str, required=True)
|
12 |
-
parser.add_argument('--name', type=str, required=True)
|
13 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
14 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
15 |
-
|
16 |
-
parser.add_argument('--value', type=str, default="Class")
|
17 |
-
|
18 |
-
args = parser.parse_args()
|
19 |
-
|
20 |
-
answers = pd.read_csv( args.answer_file)
|
21 |
-
predictions = pd.read_csv(args.predict_file)
|
22 |
-
|
23 |
-
performance = roc_auc_score(answers[args.value], predictions[args.value])
|
24 |
-
|
25 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
26 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/playground-series-s3e5_eval.py
DELETED
@@ -1,61 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import os.path
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import pandas as pd
|
7 |
-
import argparse
|
8 |
-
|
9 |
-
from sklearn.metrics import roc_auc_score
|
10 |
-
|
11 |
-
parser = argparse.ArgumentParser()
|
12 |
-
|
13 |
-
parser.add_argument('--path', type=str, required=True)
|
14 |
-
parser.add_argument('--name', type=str, required=True)
|
15 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
16 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
17 |
-
|
18 |
-
parser.add_argument('--value', type=str, default="quality")
|
19 |
-
|
20 |
-
args = parser.parse_args()
|
21 |
-
|
22 |
-
|
23 |
-
actual = pd.read_csv(args.answer_file)
|
24 |
-
submission = pd.read_csv(args.predict_file)
|
25 |
-
|
26 |
-
actual.sort_values(by=['Id'])
|
27 |
-
submission.sort_values(by=['Id'])
|
28 |
-
|
29 |
-
def quadratic_weighted_kappa(actual, predicted, N):
|
30 |
-
O = np.zeros((N, N), dtype=int)
|
31 |
-
for a, p in zip(actual, predicted):
|
32 |
-
O[a][p] += 1
|
33 |
-
|
34 |
-
w = np.zeros((N, N))
|
35 |
-
for i in range(N):
|
36 |
-
for j in range(N):
|
37 |
-
w[i][j] = ((i - j) ** 2) / ((N - 1) ** 2)
|
38 |
-
|
39 |
-
actual_hist = np.zeros(N)
|
40 |
-
for a in actual:
|
41 |
-
actual_hist[a] += 1
|
42 |
-
|
43 |
-
pred_hist = np.zeros(N)
|
44 |
-
for p in predicted:
|
45 |
-
pred_hist[p] += 1
|
46 |
-
|
47 |
-
E = np.outer(actual_hist, pred_hist)
|
48 |
-
E = E / E.sum() * O.sum()
|
49 |
-
|
50 |
-
num = (w * O).sum()
|
51 |
-
den = (w * E).sum()
|
52 |
-
|
53 |
-
return 1 - num / den
|
54 |
-
|
55 |
-
# 计算平均错误率
|
56 |
-
performance = quadratic_weighted_kappa(actual[args.value], submission[args.value], 10)
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
61 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/playground-series-s3e6_eval.py
DELETED
@@ -1,28 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
|
7 |
-
|
8 |
-
parser = argparse.ArgumentParser()
|
9 |
-
|
10 |
-
parser.add_argument('--path', type=str, required=True)
|
11 |
-
parser.add_argument('--name', type=str, required=True)
|
12 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
13 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
14 |
-
|
15 |
-
parser.add_argument('--value', type=str, default="price")
|
16 |
-
|
17 |
-
args = parser.parse_args()
|
18 |
-
|
19 |
-
def rmse(targets, predictions):
|
20 |
-
return np.sqrt(((predictions - targets) ** 2).mean())
|
21 |
-
|
22 |
-
answers = pd.read_csv( args.answer_file)
|
23 |
-
predictions = pd.read_csv(args.predict_file)
|
24 |
-
|
25 |
-
performance = rmse(answers[args.value], predictions[args.value])
|
26 |
-
|
27 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
28 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/playground-series-s3e7_eval.py
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import os.path
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import pandas as pd
|
7 |
-
import argparse
|
8 |
-
|
9 |
-
from sklearn.metrics import roc_auc_score
|
10 |
-
|
11 |
-
parser = argparse.ArgumentParser()
|
12 |
-
|
13 |
-
parser.add_argument('--path', type=str, required=True)
|
14 |
-
parser.add_argument('--name', type=str, required=True)
|
15 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
16 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
17 |
-
|
18 |
-
parser.add_argument('--value', type=str, default="booking_status")
|
19 |
-
|
20 |
-
args = parser.parse_args()
|
21 |
-
|
22 |
-
|
23 |
-
answers = pd.read_csv( args.answer_file)
|
24 |
-
predictions = pd.read_csv(args.predict_file)
|
25 |
-
|
26 |
-
performance = roc_auc_score(answers[args.value], predictions[args.value])
|
27 |
-
|
28 |
-
|
29 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
30 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/playground-series-s3e8_eval.py
DELETED
@@ -1,26 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
from sklearn.metrics import mean_squared_error
|
7 |
-
|
8 |
-
|
9 |
-
parser = argparse.ArgumentParser()
|
10 |
-
|
11 |
-
parser.add_argument('--path', type=str, required=True)
|
12 |
-
parser.add_argument('--name', type=str, required=True)
|
13 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
14 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
15 |
-
|
16 |
-
parser.add_argument('--value', type=str, default="price")
|
17 |
-
|
18 |
-
args = parser.parse_args()
|
19 |
-
|
20 |
-
answers = pd.read_csv( args.answer_file)
|
21 |
-
predictions = pd.read_csv( args.predict_file)
|
22 |
-
|
23 |
-
performance = np.sqrt(mean_squared_error(answers[args.value], predictions[args.value]))
|
24 |
-
|
25 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
26 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/playground-series-s3e9_eval.py
DELETED
@@ -1,42 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import os.path
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import pandas as pd
|
7 |
-
import argparse
|
8 |
-
|
9 |
-
from sklearn.metrics import roc_auc_score
|
10 |
-
|
11 |
-
parser = argparse.ArgumentParser()
|
12 |
-
|
13 |
-
parser.add_argument('--path', type=str, required=True)
|
14 |
-
parser.add_argument('--name', type=str, required=True)
|
15 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
16 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
17 |
-
|
18 |
-
parser.add_argument('--value', type=str, default="Strength")
|
19 |
-
|
20 |
-
args = parser.parse_args()
|
21 |
-
|
22 |
-
|
23 |
-
actual = pd.read_csv(args.answer_file)
|
24 |
-
submission = pd.read_csv(args.predict_file)
|
25 |
-
|
26 |
-
actual.sort_values(by=['id'])
|
27 |
-
submission.sort_values(by=['id'])
|
28 |
-
|
29 |
-
def calculate_rmse(actual, predicted):
|
30 |
-
actual = np.array(actual)
|
31 |
-
predicted = np.array(predicted)
|
32 |
-
mse = np.mean((actual - predicted) ** 2)
|
33 |
-
rmse = np.sqrt(mse)
|
34 |
-
return rmse
|
35 |
-
|
36 |
-
# 计算平均错误率
|
37 |
-
performance = calculate_rmse(actual[args.value], submission[args.value])
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
42 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/playground-series-s4e1_eval.py
DELETED
@@ -1,29 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
from sklearn.metrics import mean_squared_error
|
7 |
-
from sklearn.metrics import mean_squared_log_error
|
8 |
-
from sklearn.metrics import mean_absolute_error
|
9 |
-
|
10 |
-
from sklearn.metrics import roc_auc_score
|
11 |
-
|
12 |
-
parser = argparse.ArgumentParser()
|
13 |
-
|
14 |
-
parser.add_argument('--path', type=str, required=True)
|
15 |
-
parser.add_argument('--name', type=str, required=True)
|
16 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
17 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
18 |
-
|
19 |
-
parser.add_argument('--value', type=str, default="Exited")
|
20 |
-
|
21 |
-
args = parser.parse_args()
|
22 |
-
|
23 |
-
answers = pd.read_csv(args.answer_file)
|
24 |
-
predictions = pd.read_csv(args.predict_file)
|
25 |
-
|
26 |
-
performance = roc_auc_score(answers[args.value], predictions[args.value])
|
27 |
-
|
28 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
29 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/playground-series-s4e2_eval.py
DELETED
@@ -1,37 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
from sklearn.metrics import accuracy_score
|
7 |
-
|
8 |
-
|
9 |
-
# 计算多类对数损失
|
10 |
-
def multiclass_logloss(actuals, predictions):
|
11 |
-
epsilon = 1e-15 # 避免对数运算中的数值问题
|
12 |
-
predictions = np.clip(predictions, epsilon, 1 - epsilon) # 限制预测概率的范围,防止对数为无穷
|
13 |
-
predictions /= predictions.sum(axis=1)[:, np.newaxis] # 归一化确保总和为1
|
14 |
-
log_pred = np.log(predictions)
|
15 |
-
loss = -np.sum(actuals * log_pred) / len(actuals)
|
16 |
-
return loss
|
17 |
-
|
18 |
-
|
19 |
-
parser = argparse.ArgumentParser()
|
20 |
-
|
21 |
-
parser.add_argument('--path', type=str, required=True)
|
22 |
-
parser.add_argument('--name', type=str, required=True)
|
23 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
24 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
25 |
-
|
26 |
-
parser.add_argument('--value', type=str, default="NObeyesdad")
|
27 |
-
|
28 |
-
args = parser.parse_args()
|
29 |
-
|
30 |
-
|
31 |
-
answers = pd.read_csv(args.answer_file)
|
32 |
-
predictions = pd.read_csv(args.predict_file)
|
33 |
-
|
34 |
-
performance = accuracy_score(answers[args.value], predictions[args.value])
|
35 |
-
|
36 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
37 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/playground-series-s4e3_eval.py
DELETED
@@ -1,50 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
from sklearn.metrics import accuracy_score
|
7 |
-
from sklearn.metrics import roc_auc_score
|
8 |
-
|
9 |
-
|
10 |
-
# 计算多类对数损失
|
11 |
-
def multiclass_logloss(actuals, predictions):
|
12 |
-
epsilon = 1e-15 # 避免对数运算中的数值问题
|
13 |
-
predictions = np.clip(predictions, epsilon, 1 - epsilon) # 限制预测概率的范围,防止对数为无穷
|
14 |
-
predictions /= predictions.sum(axis=1)[:, np.newaxis] # 归一化确保总和为1
|
15 |
-
log_pred = np.log(predictions)
|
16 |
-
loss = -np.sum(actuals * log_pred) / len(actuals)
|
17 |
-
return loss
|
18 |
-
|
19 |
-
|
20 |
-
parser = argparse.ArgumentParser()
|
21 |
-
|
22 |
-
parser.add_argument('--path', type=str, required=True)
|
23 |
-
parser.add_argument('--name', type=str, required=True)
|
24 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
25 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
26 |
-
|
27 |
-
parser.add_argument('--value', type=str, default="NObeyesdad")
|
28 |
-
|
29 |
-
args = parser.parse_args()
|
30 |
-
|
31 |
-
actual = pd.read_csv(args.answer_file)
|
32 |
-
submission = pd.read_csv( args.predict_file)
|
33 |
-
|
34 |
-
# 定义要计算的类别
|
35 |
-
categories = ['Pastry', 'Z_Scratch', 'K_Scatch', 'Stains', 'Dirtiness', 'Bumps', 'Other_Faults']
|
36 |
-
|
37 |
-
# 提取数据并计算每个类别的 ROC AUC 分数
|
38 |
-
auc_scores = {}
|
39 |
-
for category in categories:
|
40 |
-
y_true = actual[category].values
|
41 |
-
y_pred = submission[category].values
|
42 |
-
auc_scores[category] = roc_auc_score(y_true, y_pred)
|
43 |
-
|
44 |
-
# 计算平均 AUC 分数
|
45 |
-
performance = sum(auc_scores.values()) / len(auc_scores)
|
46 |
-
|
47 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
48 |
-
f.write(str(performance))
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/playground-series-s4e4_eval.py
DELETED
@@ -1,29 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
from sklearn.metrics import mean_squared_error
|
7 |
-
from sklearn.metrics import mean_squared_log_error
|
8 |
-
from sklearn.metrics import mean_absolute_error
|
9 |
-
|
10 |
-
from sklearn.metrics import roc_auc_score
|
11 |
-
|
12 |
-
parser = argparse.ArgumentParser()
|
13 |
-
|
14 |
-
parser.add_argument('--path', type=str, required=True)
|
15 |
-
parser.add_argument('--name', type=str, required=True)
|
16 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
17 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
18 |
-
|
19 |
-
parser.add_argument('--value', type=str, default="Rings")
|
20 |
-
|
21 |
-
args = parser.parse_args()
|
22 |
-
|
23 |
-
answers = pd.read_csv(args.answer_file)
|
24 |
-
predictions = pd.read_csv(args.predict_file)
|
25 |
-
|
26 |
-
performance = np.sqrt(mean_squared_log_error(answers[args.value], predictions[args.value]))
|
27 |
-
|
28 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
29 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/playground-series-s4e5_eval.py
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
from sklearn.metrics import mean_squared_error
|
7 |
-
from sklearn.metrics import mean_squared_log_error
|
8 |
-
from sklearn.metrics import mean_absolute_error
|
9 |
-
from sklearn.metrics import r2_score
|
10 |
-
|
11 |
-
from sklearn.metrics import roc_auc_score
|
12 |
-
|
13 |
-
parser = argparse.ArgumentParser()
|
14 |
-
|
15 |
-
parser.add_argument('--path', type=str, required=True)
|
16 |
-
parser.add_argument('--name', type=str, required=True)
|
17 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
18 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
19 |
-
|
20 |
-
parser.add_argument('--value', type=str, default="FloodProbability")
|
21 |
-
|
22 |
-
args = parser.parse_args()
|
23 |
-
|
24 |
-
answers = pd.read_csv(args.answer_file)
|
25 |
-
predictions = pd.read_csv( args.predict_file)
|
26 |
-
|
27 |
-
performance = r2_score(answers[args.value], predictions[args.value])
|
28 |
-
|
29 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
30 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_modeling/evaluation/playground-series-s4e6_eval.py
DELETED
@@ -1,31 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import argparse
|
6 |
-
from sklearn.metrics import mean_squared_error
|
7 |
-
from sklearn.metrics import mean_squared_log_error
|
8 |
-
from sklearn.metrics import mean_absolute_error
|
9 |
-
from sklearn.metrics import r2_score
|
10 |
-
|
11 |
-
from sklearn.metrics import accuracy_score
|
12 |
-
from sklearn.metrics import roc_auc_score
|
13 |
-
|
14 |
-
parser = argparse.ArgumentParser()
|
15 |
-
|
16 |
-
parser.add_argument('--path', type=str, required=True)
|
17 |
-
parser.add_argument('--name', type=str, required=True)
|
18 |
-
parser.add_argument('--answer_file', type=str, required=True)
|
19 |
-
parser.add_argument('--predict_file', type=str, required=True)
|
20 |
-
|
21 |
-
parser.add_argument('--value', type=str, default="Target")
|
22 |
-
|
23 |
-
args = parser.parse_args()
|
24 |
-
|
25 |
-
answers = pd.read_csv(args.answer_file)
|
26 |
-
predictions = pd.read_csv(args.predict_file)
|
27 |
-
|
28 |
-
performance = accuracy_score(answers[args.value], predictions[args.value])
|
29 |
-
|
30 |
-
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
|
31 |
-
f.write(str(performance))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|