Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
named-entity-recognition
Languages:
Tagalog
Size:
1K - 10K
ArXiv:
DOI:
License:
ljvmiranda921
commited on
Delete loading script
Browse files- tlunified-ner.py +0 -95
tlunified-ner.py
DELETED
@@ -1,95 +0,0 @@
|
|
1 |
-
from typing import List
|
2 |
-
|
3 |
-
import datasets
|
4 |
-
|
5 |
-
logger = datasets.logging.get_logger(__name__)
|
6 |
-
|
7 |
-
_DESCRIPTION = """
|
8 |
-
This dataset contains the annotated TLUnified corpora from Cruz and Cheng
|
9 |
-
(2021). It is a curated sample of around 7,000 documents for the
|
10 |
-
named entity recognition (NER) task. The majority of the corpus are news
|
11 |
-
reports in Tagalog, resembling the domain of the original ConLL 2003. There
|
12 |
-
are three entity types: Person (PER), Organization (ORG), and Location (LOC).
|
13 |
-
"""
|
14 |
-
_LICENSE = """GNU GPL v3.0"""
|
15 |
-
_URL = "https://huggingface.co/ljvmiranda921/tlunified-ner"
|
16 |
-
_CLASSES = ["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
|
17 |
-
_VERSION = "1.0.0"
|
18 |
-
|
19 |
-
|
20 |
-
class TLUnifiedNERConfig(datasets.BuilderConfig):
|
21 |
-
def __init__(self, **kwargs):
|
22 |
-
super(TLUnifiedNER, self).__init__(**kwargs)
|
23 |
-
|
24 |
-
|
25 |
-
class TLUnifiedNER(datasets.GeneratorBasedBuilder):
|
26 |
-
"""Contains an annotated version of the TLUnified dataset from Cruz and Cheng (2021)."""
|
27 |
-
|
28 |
-
VERSION = datasets.Version(_VERSION)
|
29 |
-
|
30 |
-
def _info(self) -> "datasets.DatasetInfo":
|
31 |
-
return datasets.DatasetInfo(
|
32 |
-
description=_DESCRIPTION,
|
33 |
-
features=datasets.Features(
|
34 |
-
{
|
35 |
-
"id": datasets.Value("string"),
|
36 |
-
"tokens": datasets.Sequence(datasets.Value("string")),
|
37 |
-
"ner_tags": datasets.Sequence(
|
38 |
-
datasets.features.ClassLabel(names=_CLASSES)
|
39 |
-
),
|
40 |
-
}
|
41 |
-
),
|
42 |
-
homepage=_URL,
|
43 |
-
supervised_keys=None,
|
44 |
-
)
|
45 |
-
|
46 |
-
def _split_generators(
|
47 |
-
self, dl_manager: "datasets.builder.DownloadManager"
|
48 |
-
) -> List["datasets.SplitGenerator"]:
|
49 |
-
"""Return a list of SplitGenerators that organizes the splits."""
|
50 |
-
# The file extracts into {train,dev,test}.spacy files. The _generate_examples function
|
51 |
-
# below will define how these files are parsed.
|
52 |
-
data_files = {
|
53 |
-
"train": dl_manager.download_and_extract("corpus/iob/train.iob"),
|
54 |
-
"dev": dl_manager.download_and_extract("corpus/iob/dev.iob"),
|
55 |
-
"test": dl_manager.download_and_extract("corpus/iob/test.iob"),
|
56 |
-
}
|
57 |
-
|
58 |
-
return [
|
59 |
-
# fmt: off
|
60 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}),
|
61 |
-
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["dev"]}),
|
62 |
-
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}),
|
63 |
-
# fmt: on
|
64 |
-
]
|
65 |
-
|
66 |
-
def _generate_examples(self, filepath: str):
|
67 |
-
"""Defines how examples are parsed from the IOB file."""
|
68 |
-
logger.info("⏳ Generating examples from = %s", filepath)
|
69 |
-
with open(filepath, encoding="utf-8") as f:
|
70 |
-
guid = 0
|
71 |
-
tokens = []
|
72 |
-
ner_tags = []
|
73 |
-
for line in f:
|
74 |
-
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
|
75 |
-
if tokens:
|
76 |
-
yield guid, {
|
77 |
-
"id": str(guid),
|
78 |
-
"tokens": tokens,
|
79 |
-
"ner_tags": ner_tags,
|
80 |
-
}
|
81 |
-
guid += 1
|
82 |
-
tokens = []
|
83 |
-
ner_tags = []
|
84 |
-
else:
|
85 |
-
# TLUnified-NER iob are separated by \t
|
86 |
-
token, ner_tag = line.split("\t")
|
87 |
-
tokens.append(token)
|
88 |
-
ner_tags.append(ner_tag.rstrip())
|
89 |
-
# Last example
|
90 |
-
if tokens:
|
91 |
-
yield guid, {
|
92 |
-
"id": str(guid),
|
93 |
-
"tokens": tokens,
|
94 |
-
"ner_tags": ner_tags,
|
95 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|