Datasets:

Languages:
Japanese
License:
Kosuke-Yamada commited on
Commit
53588e8
·
1 Parent(s): 18bdb72

add llm-jp-eval datasets

Browse files
Files changed (21) hide show
  1. base.py +117 -0
  2. chabsa.py +66 -0
  3. coreference.py +62 -0
  4. dependency.py +40 -0
  5. jamp.py +61 -0
  6. janli.py +52 -0
  7. jcommonsenseqa.py +70 -0
  8. jemhopqa.py +68 -0
  9. jnli.py +70 -0
  10. jsem.py +93 -0
  11. jsick.py +61 -0
  12. jsquad.py +74 -0
  13. jsts.py +70 -0
  14. llm-jp-eval.py +159 -0
  15. mawps.py +75 -0
  16. ner.py +71 -0
  17. niilc.py +77 -0
  18. pas.py +110 -0
  19. reading.py +83 -0
  20. requirements.txt +1 -0
  21. wiki_base.py +112 -0
base.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import json
3
+ from dataclasses import asdict, dataclass
4
+ from logging import DEBUG, StreamHandler, getLogger
5
+ from pathlib import Path
6
+
7
+ logger = getLogger(__name__)
8
+ handler = StreamHandler()
9
+ handler.setLevel(DEBUG)
10
+ logger.setLevel(DEBUG)
11
+ logger.addHandler(handler)
12
+ logger.propagate = False
13
+
14
+
15
+ @dataclass(frozen=True)
16
+ class Sample:
17
+ input: str
18
+ output: str
19
+
20
+
21
+ @dataclass
22
+ class OutputInfo:
23
+ instruction: str
24
+ output_length: int
25
+ metrics: list[str]
26
+ few_shots: list[Sample]
27
+ samples: list[Sample]
28
+
29
+
30
+ class BaseDatasetProcessor:
31
+ data_name: str
32
+
33
+ def __init__(self, dataset_dir: Path, version_name: str) -> None:
34
+ self.dataset_dir: Path = dataset_dir
35
+ self.dataset_dir.mkdir(parents=True, exist_ok=True)
36
+ self.raw_dir: Path = dataset_dir / "raw_files"
37
+ self.raw_dir.mkdir(parents=True, exist_ok=True)
38
+ self.evaluation_dir: Path = dataset_dir / version_name / "evaluation"
39
+ self.evaluation_dir.mkdir(parents=True, exist_ok=True)
40
+ self.tuning_dir: Path = dataset_dir / version_name / "tuning"
41
+ self.tuning_dir.mkdir(parents=True, exist_ok=True)
42
+ self.output_info: OutputInfo = OutputInfo(
43
+ instruction="",
44
+ output_length=0,
45
+ metrics=[],
46
+ few_shots=[],
47
+ samples=[],
48
+ )
49
+
50
+ def _save_evaluation_data(self, samples: list[Sample], output_path: Path) -> None:
51
+ output_path.parent.mkdir(parents=True, exist_ok=True)
52
+ saved_output_info: OutputInfo = copy.deepcopy(self.output_info)
53
+ saved_output_info.samples = samples
54
+ assert saved_output_info.instruction != ""
55
+ assert saved_output_info.output_length != 0
56
+ assert saved_output_info.metrics != []
57
+ assert saved_output_info.samples != []
58
+ with output_path.open("w", encoding="utf-8") as f:
59
+ json.dump(asdict(saved_output_info), f, ensure_ascii=False, indent=4)
60
+
61
+ def pipeline(self) -> None:
62
+ logger.info(f"Start processing {self.data_name}")
63
+ self.download()
64
+ logger.info(f"Finish downloading {self.data_name}")
65
+ self.preprocess_evaluation_data()
66
+ logger.info(f"Finish preprocessing evaluation data of {self.data_name}")
67
+ self.preprocess_tuning_data()
68
+ logger.info(f"Finish preprocessing tuning data of {self.data_name}")
69
+
70
+ def download(self) -> None:
71
+ raise NotImplementedError()
72
+
73
+ def preprocess_evaluation_data(self) -> None:
74
+ raise NotImplementedError()
75
+
76
+ def preprocess_tuning_data(self) -> None:
77
+ for data_split in ["train", "dev"]:
78
+ path: Path = self.evaluation_dir / data_split / f"{self.data_name}.json"
79
+ if not path.exists():
80
+ print(f"{data_split} data is not found: {path}")
81
+ return
82
+
83
+ with path.open(encoding="utf-8") as f:
84
+ loaded_samples = json.load(f)
85
+
86
+ saved_samples: list[dict[str, str]] = []
87
+ for sample_idx, sample in enumerate(loaded_samples["samples"]):
88
+ text: str = (
89
+ f"以下は、タスクを説明する指示と、文脈のある入力の組み合わせです。要求を適切に満たす応答を書きなさい。\n\n### 指示:\n{loaded_samples['instruction']}"
90
+ )
91
+ if sample["input"]:
92
+ text += f"\n\n### 入力:\n{sample['input']}"
93
+ text += f"\n\n### 応答:\n{sample['output']}"
94
+ saved_samples.append(
95
+ {
96
+ "ID": f"{self.data_name}-{sample_idx}",
97
+ "instruction": loaded_samples["instruction"],
98
+ "input": sample["input"],
99
+ "output": sample["output"],
100
+ "text": text,
101
+ }
102
+ )
103
+ tuning_split_dir: Path = self.tuning_dir / data_split
104
+ if not tuning_split_dir.exists():
105
+ tuning_split_dir.mkdir(parents=True)
106
+ with (tuning_split_dir / f"{self.data_name}.json").open(
107
+ "w", encoding="utf-8"
108
+ ) as f:
109
+ json.dump(saved_samples, f, ensure_ascii=False, indent=4)
110
+ if data_split == "dev":
111
+ tuning_dev_first100_dir: Path = self.tuning_dir / "dev_first100"
112
+ if not tuning_dev_first100_dir.exists():
113
+ tuning_dev_first100_dir.mkdir(parents=True)
114
+ with (tuning_dev_first100_dir / f"{self.data_name}.json").open(
115
+ "w", encoding="utf-8"
116
+ ) as f:
117
+ json.dump(saved_samples[:100], f, ensure_ascii=False, indent=4)
chabsa.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import random
3
+ from pathlib import Path
4
+ from urllib.request import urlretrieve
5
+ from zipfile import ZipFile
6
+
7
+ from .base import BaseDatasetProcessor, Sample
8
+
9
+
10
+ class ChabsaDatasetProcessor(BaseDatasetProcessor):
11
+ data_name = "chabsa"
12
+
13
+ def __init__(self, dataset_dir: Path, version_name: str) -> None:
14
+ super().__init__(dataset_dir, version_name)
15
+ self.output_info.instruction = (
16
+ "与えられた文章から固有表現で書かれたターゲットの名前を抽出し、それに対する極性をpositive、neutral、negativeの中から選択して下さい。"
17
+ "固有表現で書かれたターゲットの名前と、それに対する極性(positive、neutral、negativeのいずれか)のペアをスペース( )で区切って出力し、それ以外には何も含めないことを厳守してください。"
18
+ "答えが複数の場合、改行で繋げてください。"
19
+ "ただし、ターゲットは固有表現である市場、市況、会社/法人、グループ、会社内の部門、事業部、事業領域、製品、サービスの名称などを指すこととします。"
20
+ )
21
+ self.output_info.output_length = 191
22
+ self.output_info.metrics = ["set_f1"]
23
+
24
+ def download(self):
25
+ raw_path: Path = self.raw_dir / f"{self.data_name}"
26
+ if not raw_path.exists():
27
+ urlretrieve(
28
+ "https://s3-ap-northeast-1.amazonaws.com/dev.tech-sketch.jp/chakki/public/chABSA-dataset.zip",
29
+ str(self.raw_dir / f"{self.data_name}.zip"),
30
+ )
31
+ with ZipFile(self.raw_dir / f"{self.data_name}.zip") as fw:
32
+ fw.extractall(raw_path)
33
+
34
+ def preprocess_evaluation_data(self):
35
+ samples: list[Sample] = []
36
+ for path in sorted(
37
+ (self.raw_dir / self.data_name / "chABSA-dataset").glob("*.json")
38
+ ):
39
+ with path.open(encoding="utf-8") as f:
40
+ loaded_sample: dict = json.load(f)
41
+ for sentence in loaded_sample["sentences"]:
42
+ outputs: list[str] = []
43
+ for opinion in sentence["opinions"]:
44
+ outputs.append(f"{opinion['target']} {opinion['polarity']}")
45
+ if not outputs:
46
+ continue
47
+ sample: Sample = Sample(
48
+ input=f"文章:{sentence['sentence']}", output="\n".join(outputs)
49
+ )
50
+ samples.append(sample)
51
+
52
+ random.seed(42)
53
+ random.shuffle(samples)
54
+
55
+ self._save_evaluation_data(
56
+ samples[: int(len(samples) * 0.8)],
57
+ self.evaluation_dir / "train" / f"{self.data_name}.json",
58
+ )
59
+ self._save_evaluation_data(
60
+ samples[int(len(samples) * 0.8) : int(len(samples) * 0.9)],
61
+ self.evaluation_dir / "dev" / f"{self.data_name}.json",
62
+ )
63
+ self._save_evaluation_data(
64
+ samples[int(len(samples) * 0.9) :],
65
+ self.evaluation_dir / "test" / f"{self.data_name}.json",
66
+ )
coreference.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import textwrap
2
+ from collections import defaultdict
3
+ from pathlib import Path
4
+
5
+ from rhoknp import BasePhrase, Document
6
+
7
+ from .base import OutputInfo, Sample
8
+ from .wiki_base import WikipediaBaseDatasetProcessor, convert_base_phrase_to_text
9
+
10
+
11
+ class WikipediaCoreferenceDatasetProcessor(WikipediaBaseDatasetProcessor):
12
+ data_name = "wiki_coreference"
13
+ INNER_DELIMITER = " "
14
+ OUTER_DELIMITER = "\n"
15
+
16
+ def __init__(self, dataset_dir: Path, version_name: str) -> None:
17
+ output_info = OutputInfo(
18
+ instruction=textwrap.dedent(
19
+ """\
20
+ 与えられたテキストから同一の対象を指し示すフレーズを全て抽出してください。回答の他には何も含めないことを厳守してください。回答は以下のような形式で答えてください。
21
+ フレーズ1 フレーズ2 フレーズ3
22
+ フレーズ4 フレーズ5
23
+ """
24
+ ).rstrip(),
25
+ output_length=256, # Max number of tokens tokenized by `llm-jp/llm-jp-1.3b-v1.0` is 131.
26
+ metrics=["set_f1"],
27
+ few_shots=[],
28
+ samples=[],
29
+ )
30
+ super().__init__(dataset_dir, version_name, output_info)
31
+
32
+ @staticmethod
33
+ def convert_document_to_sample(document: Document) -> Sample:
34
+ filtered_sentences = [
35
+ sent for sent in document.sentences if "括弧始" not in sent.misc_comment
36
+ ]
37
+ filtered_document = Document.from_sentences(filtered_sentences)
38
+ coreference_texts = []
39
+ eids_to_base_phrases: dict[tuple[int, ...], list[BasePhrase]] = defaultdict(
40
+ list
41
+ )
42
+ for base_phrase in filtered_document.base_phrases:
43
+ if not base_phrase.entities:
44
+ continue
45
+ eids = sorted(entity.eid for entity in base_phrase.entities)
46
+ if base_phrase not in eids_to_base_phrases[tuple(eids)]:
47
+ eids_to_base_phrases[tuple(eids)].append(base_phrase)
48
+
49
+ for base_phrases in eids_to_base_phrases.values():
50
+ if len(base_phrases) < 2:
51
+ continue
52
+ sorted_phrases = sorted(base_phrases, key=lambda p: p.global_index)
53
+ mention_texts = [convert_base_phrase_to_text(bp) for bp in sorted_phrases]
54
+ coreference_texts.append(
55
+ WikipediaCoreferenceDatasetProcessor.INNER_DELIMITER.join(mention_texts)
56
+ )
57
+ return Sample(
58
+ input=filtered_document.text,
59
+ output=WikipediaCoreferenceDatasetProcessor.OUTER_DELIMITER.join(
60
+ coreference_texts
61
+ ),
62
+ )
dependency.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import textwrap
2
+ from pathlib import Path
3
+
4
+ from rhoknp import Document
5
+
6
+ from .base import OutputInfo, Sample
7
+ from .wiki_base import WikipediaBaseDatasetProcessor
8
+
9
+
10
+ class WikipediaDependencyDatasetProcessor(WikipediaBaseDatasetProcessor):
11
+ data_name = "wiki_dependency"
12
+
13
+ def __init__(self, dataset_dir: Path, version_name: str) -> None:
14
+ output_info = OutputInfo(
15
+ instruction=textwrap.dedent(
16
+ """\
17
+ 与えられたテキストについて文節間の係り受け関係を列挙してください。回答の他には何も含めないことを厳守してください。回答は以下のような形式で答えてください。
18
+ 係り元文節1 -> 係り先文節1
19
+ 係り元文節2 -> 係り先文節2
20
+ """
21
+ ).rstrip(),
22
+ output_length=512, # Max number of tokens tokenized by `llm-jp/llm-jp-1.3b-v1.0` is 844.
23
+ metrics=["set_f1"],
24
+ few_shots=[],
25
+ samples=[],
26
+ )
27
+ super().__init__(dataset_dir, version_name, output_info)
28
+
29
+ @staticmethod
30
+ def convert_document_to_sample(document: Document) -> Sample:
31
+ text = ""
32
+ dependencies: list[str] = []
33
+ for sentence in document.sentences:
34
+ if "括弧始" in sentence.misc_comment:
35
+ continue
36
+ text += sentence.text
37
+ for phrase in sentence.phrases:
38
+ if parent_phrase := phrase.parent:
39
+ dependencies.append(f"{phrase.text} -> {parent_phrase.text}")
40
+ return Sample(input=text, output="\n".join(dependencies))
jamp.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ from pathlib import Path
3
+ from urllib.request import urlretrieve
4
+
5
+ from .base import BaseDatasetProcessor, Sample
6
+
7
+
8
+ class JAMPDatasetProcessor(BaseDatasetProcessor):
9
+ data_name = "jamp"
10
+
11
+ def __init__(self, dataset_dir: Path, version_name: str) -> None:
12
+ super().__init__(dataset_dir, version_name)
13
+ self.output_info.instruction = "前提と仮説の関係をentailment、contradiction、neutralの中から回答してください。それ以外には何も含めないことを厳守してください。\n\n制約:\n- 前提から仮説が、時間関係上導出可能である場合はentailmentと出力\n- 前提と仮説が両立しえない場合はcontradictionと出力\n- そのいずれでもない場合はneutralと出力"
14
+ self.output_info.output_length = 3
15
+ self.output_info.metrics = ["exact_match"]
16
+
17
+ def download(self):
18
+ raw_train_path: Path = self.raw_dir / f"{self.data_name}_train.tsv"
19
+ if not raw_train_path.exists():
20
+ urlretrieve(
21
+ "https://raw.githubusercontent.com/tomo-ut/temporalNLI_dataset/main/dataset/train_all.tsv",
22
+ str(raw_train_path),
23
+ )
24
+ raw_test_path: Path = self.raw_dir / f"{self.data_name}_test.tsv"
25
+ if not raw_test_path.exists():
26
+ urlretrieve(
27
+ "https://raw.githubusercontent.com/tomo-ut/temporalNLI_dataset/main/dataset/test_2.tsv",
28
+ str(raw_test_path),
29
+ )
30
+
31
+ def preprocess_evaluation_data(self):
32
+ train_dev_samples: list[Sample] = []
33
+ with (self.raw_dir / f"{self.data_name}_train.tsv").open() as f_train:
34
+ next(f_train)
35
+ for line in f_train:
36
+ row: list[str] = line.split("\t")
37
+ train_dev_samples.append(
38
+ Sample(input=f"前提:{row[1]}\n仮説:{row[2]}", output=row[3])
39
+ )
40
+ random.seed(42)
41
+ random.shuffle(train_dev_samples)
42
+ self._save_evaluation_data(
43
+ train_dev_samples[: int(len(train_dev_samples) * 0.9)],
44
+ self.evaluation_dir / "train" / f"{self.data_name}.json",
45
+ )
46
+ self._save_evaluation_data(
47
+ train_dev_samples[int(len(train_dev_samples) * 0.9) :],
48
+ self.evaluation_dir / "dev" / f"{self.data_name}.json",
49
+ )
50
+
51
+ test_samples: list[Sample] = []
52
+ with (self.raw_dir / f"{self.data_name}_test.tsv").open() as f_test:
53
+ next(f_test)
54
+ for line in f_test:
55
+ row: list[str] = line.split("\t")
56
+ test_samples.append(
57
+ Sample(input=f"前提:{row[1]}\n仮説:{row[2]}", output=row[3])
58
+ )
59
+ self._save_evaluation_data(
60
+ test_samples, self.evaluation_dir / "test" / f"{self.data_name}.json"
61
+ )
janli.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ from pathlib import Path
3
+ from urllib.request import urlretrieve
4
+
5
+ from .base import BaseDatasetProcessor, Sample
6
+
7
+
8
+ class JaNLIDatasetProcessor(BaseDatasetProcessor):
9
+ data_name = "janli"
10
+
11
+ def __init__(self, dataset_dir: Path, version_name: str) -> None:
12
+ super().__init__(dataset_dir, version_name)
13
+ self.output_info.instruction = "前提と仮説の関係をentailment、non-entailmentの中から回答してください。それ以外には何も含めないことを厳守してください。\n\n制約:\n- 前提に対して仮説が同じ意味を含む場合は、entailmentと出力\n- 前提に対して仮説が異なる意味を含む場合は、non-entailmentと出力"
14
+ self.output_info.output_length = 7
15
+ self.output_info.metrics = ["exact_match"]
16
+
17
+ def download(self):
18
+ raw_path: Path = self.raw_dir / f"{self.data_name}.tsv"
19
+ if not raw_path.exists():
20
+ urlretrieve(
21
+ "https://raw.githubusercontent.com/verypluming/JaNLI/main/janli.tsv",
22
+ str(raw_path),
23
+ )
24
+
25
+ def preprocess_evaluation_data(self):
26
+ train_dev_samples: list[Sample] = []
27
+ test_samples: list[Sample] = []
28
+ with (self.raw_dir / f"{self.data_name}.tsv").open() as f:
29
+ next(f)
30
+ for line in f:
31
+ row: list[str] = line.split("\t")
32
+ if row[-1].strip() == "test":
33
+ test_samples.append(
34
+ Sample(input=f"前提:{row[1]}\n仮説:{row[2]}", output=row[3])
35
+ )
36
+ else:
37
+ train_dev_samples.append(
38
+ Sample(input=f"前提:{row[1]}\n仮説:{row[2]}", output=row[3])
39
+ )
40
+ random.seed(42)
41
+ random.shuffle(train_dev_samples)
42
+ self._save_evaluation_data(
43
+ train_dev_samples[: int(len(train_dev_samples) * 0.9)],
44
+ self.evaluation_dir / "train" / f"{self.data_name}.json",
45
+ )
46
+ self._save_evaluation_data(
47
+ train_dev_samples[int(len(train_dev_samples) * 0.9) :],
48
+ self.evaluation_dir / "dev" / f"{self.data_name}.json",
49
+ )
50
+ self._save_evaluation_data(
51
+ test_samples, self.evaluation_dir / "test" / f"{self.data_name}.json"
52
+ )
jcommonsenseqa.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import random
3
+ from pathlib import Path
4
+ from urllib.request import urlretrieve
5
+
6
+ from .base import BaseDatasetProcessor, Sample
7
+
8
+
9
+ class JCommonsenseQADatasetProcessor(BaseDatasetProcessor):
10
+ data_name = "jcommonsenseqa"
11
+
12
+ def __init__(self, dataset_dir: Path, version_name: str) -> None:
13
+ super().__init__(dataset_dir, version_name)
14
+ self.output_info.instruction = "質問と回答の選択肢を入力として受け取り、選択肢から回答を選択してください。なお、回答は選択肢の番号(例:0)でするものとします。 回答となる数値をint型で返し、他には何も含めないことを厳守してください。"
15
+ self.output_info.output_length = 1
16
+ self.output_info.metrics = ["exact_match"]
17
+
18
+ def download(self):
19
+ raw_train_path: Path = self.raw_dir / f"{self.data_name}_train.json"
20
+ if not raw_train_path.exists():
21
+ urlretrieve(
22
+ "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jcommonsenseqa-v1.1/train-v1.1.json",
23
+ str(raw_train_path),
24
+ )
25
+ raw_test_path: Path = self.raw_dir / f"{self.data_name}_test.json"
26
+ if not raw_test_path.exists():
27
+ urlretrieve(
28
+ "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jcommonsenseqa-v1.1/valid-v1.1.json",
29
+ str(raw_test_path),
30
+ )
31
+
32
+ def preprocess_evaluation_data(self):
33
+ train_dev_samples: list[Sample] = []
34
+ with (self.raw_dir / f"{self.data_name}_train.json").open(
35
+ encoding="utf-8"
36
+ ) as f_train:
37
+ for line in f_train:
38
+ sample_dict: dict = json.loads(line.strip())
39
+ train_dev_samples.append(
40
+ Sample(
41
+ input=f"質問:{sample_dict['question']}\n選択肢:0.{sample_dict['choice0']},1.{sample_dict['choice1']},2.{sample_dict['choice2']},3.{sample_dict['choice3']},4.{sample_dict['choice4']}",
42
+ output=str(sample_dict["label"]),
43
+ )
44
+ )
45
+ random.seed(42)
46
+ random.shuffle(train_dev_samples)
47
+ self._save_evaluation_data(
48
+ train_dev_samples[: int(len(train_dev_samples) * 0.9)],
49
+ self.evaluation_dir / "train" / f"{self.data_name}.json",
50
+ )
51
+ self._save_evaluation_data(
52
+ train_dev_samples[int(len(train_dev_samples) * 0.9) :],
53
+ self.evaluation_dir / "dev" / f"{self.data_name}.json",
54
+ )
55
+
56
+ test_samples: list[Sample] = []
57
+ with (self.raw_dir / f"{self.data_name}_test.json").open(
58
+ encoding="utf-8"
59
+ ) as f_test:
60
+ for line in f_test:
61
+ sample_dict: dict = json.loads(line.strip())
62
+ test_samples.append(
63
+ Sample(
64
+ input=f"質問:{sample_dict['question']}\n選択肢:0.{sample_dict['choice0']},1.{sample_dict['choice1']},2.{sample_dict['choice2']},3.{sample_dict['choice3']},4.{sample_dict['choice4']}",
65
+ output=str(sample_dict["label"]),
66
+ )
67
+ )
68
+ self._save_evaluation_data(
69
+ test_samples, self.evaluation_dir / "test" / f"{self.data_name}.json"
70
+ )
jemhopqa.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import random
3
+ from pathlib import Path
4
+ from urllib.request import urlretrieve
5
+
6
+ from .base import BaseDatasetProcessor, Sample
7
+
8
+
9
+ class JEMHopQADatasetProcessor(BaseDatasetProcessor):
10
+ data_name = "jemhopqa"
11
+
12
+ def __init__(self, dataset_dir: Path, version_name: str) -> None:
13
+ super().__init__(dataset_dir, version_name)
14
+ self.output_info.instruction = "質問を入力とし、回答を出力してください。回答の他には何も含めないことを厳守してください。回答が'はい'と'いいえ'で答えることができる場合、'YES'と'NO'で答えてください。"
15
+ self.output_info.output_length = 15
16
+ self.output_info.metrics = ["char_f1"]
17
+
18
+ def download(self):
19
+ raw_train_path: Path = self.raw_dir / f"{self.data_name}_train.json"
20
+ if not raw_train_path.exists():
21
+ urlretrieve(
22
+ "https://raw.githubusercontent.com/aiishii/JEMHopQA/main/corpus/train.json",
23
+ str(raw_train_path),
24
+ )
25
+ raw_test_path: Path = self.raw_dir / f"{self.data_name}_test.json"
26
+ if not raw_test_path.exists():
27
+ urlretrieve(
28
+ "https://raw.githubusercontent.com/aiishii/JEMHopQA/main/corpus/dev.json",
29
+ str(raw_test_path),
30
+ )
31
+
32
+ def preprocess_evaluation_data(self):
33
+ train_dev_samples: list[Sample] = []
34
+ with (self.raw_dir / f"{self.data_name}_train.json").open(
35
+ encoding="utf-8"
36
+ ) as f_train:
37
+ for loaded_sample in json.load(f_train):
38
+ train_dev_samples.append(
39
+ Sample(
40
+ input=f"質問:{loaded_sample['question']}",
41
+ output=loaded_sample["answer"],
42
+ )
43
+ )
44
+ random.seed(42)
45
+ random.shuffle(train_dev_samples)
46
+ self._save_evaluation_data(
47
+ train_dev_samples[: int(len(train_dev_samples) * 0.9)],
48
+ self.evaluation_dir / "train" / f"{self.data_name}.json",
49
+ )
50
+ self._save_evaluation_data(
51
+ train_dev_samples[int(len(train_dev_samples) * 0.9) :],
52
+ self.evaluation_dir / "dev" / f"{self.data_name}.json",
53
+ )
54
+
55
+ test_samples: list[Sample] = []
56
+ with (self.raw_dir / f"{self.data_name}_test.json").open(
57
+ encoding="utf-8"
58
+ ) as f_test:
59
+ for loaded_sample in json.load(f_test):
60
+ test_samples.append(
61
+ Sample(
62
+ input=f"質問:{loaded_sample['question']}",
63
+ output=loaded_sample["answer"],
64
+ )
65
+ )
66
+ self._save_evaluation_data(
67
+ test_samples, self.evaluation_dir / "test" / f"{self.data_name}.json"
68
+ )
jnli.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import random
3
+ from pathlib import Path
4
+ from urllib.request import urlretrieve
5
+
6
+ from .base import BaseDatasetProcessor, Sample
7
+
8
+
9
+ class JNLIDatasetProcessor(BaseDatasetProcessor):
10
+ data_name = "jnli"
11
+
12
+ def __init__(self, dataset_dir: Path, version_name: str) -> None:
13
+ super().__init__(dataset_dir, version_name)
14
+ self.output_info.instruction = "前提と仮説の関係をentailment、contradiction、neutralの中から回答してください。それ以外には何も含めないことを厳守してください。\n\n制約:\n- 前提から仮説が、論理的知識や常識的知識を用いて導出可能である場合はentailmentと出力\n- 前提と仮説が両立しえない場合はcontradictionと出力\n- そのいずれでもない場合はneutralと出力"
15
+ self.output_info.output_length = 3
16
+ self.output_info.metrics = ["exact_match"]
17
+
18
+ def download(self):
19
+ raw_train_path: Path = self.raw_dir / f"{self.data_name}_train.json"
20
+ if not raw_train_path.exists():
21
+ urlretrieve(
22
+ "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jnli-v1.1/train-v1.1.json",
23
+ str(raw_train_path),
24
+ )
25
+ raw_test_path: Path = self.raw_dir / f"{self.data_name}_test.json"
26
+ if not raw_test_path.exists():
27
+ urlretrieve(
28
+ "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jnli-v1.1/valid-v1.1.json",
29
+ str(raw_test_path),
30
+ )
31
+
32
+ def preprocess_evaluation_data(self):
33
+ train_dev_samples: list[Sample] = []
34
+ with (self.raw_dir / f"{self.data_name}_train.json").open(
35
+ encoding="utf-8"
36
+ ) as f_train:
37
+ for line in f_train:
38
+ sample_dict: dict = json.loads(line.strip())
39
+ train_dev_samples.append(
40
+ Sample(
41
+ input=f"前提:{sample_dict['sentence1']}\n仮説:{sample_dict['sentence2']}",
42
+ output=sample_dict["label"],
43
+ )
44
+ )
45
+ random.seed(42)
46
+ random.shuffle(train_dev_samples)
47
+ self._save_evaluation_data(
48
+ train_dev_samples[: int(len(train_dev_samples) * 0.9)],
49
+ self.evaluation_dir / "train" / f"{self.data_name}.json",
50
+ )
51
+ self._save_evaluation_data(
52
+ train_dev_samples[int(len(train_dev_samples) * 0.9) :],
53
+ self.evaluation_dir / "dev" / f"{self.data_name}.json",
54
+ )
55
+
56
+ test_samples: list[Sample] = []
57
+ with (self.raw_dir / f"{self.data_name}_test.json").open(
58
+ encoding="utf-8"
59
+ ) as f_test:
60
+ for line in f_test:
61
+ sample_dict: dict = json.loads(line.strip())
62
+ test_samples.append(
63
+ Sample(
64
+ input=f"前提:{sample_dict['sentence1']}\n仮説:{sample_dict['sentence2']}",
65
+ output=sample_dict["label"],
66
+ )
67
+ )
68
+ self._save_evaluation_data(
69
+ test_samples, self.evaluation_dir / "test" / f"{self.data_name}.json"
70
+ )
jsem.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ from pathlib import Path
3
+ from urllib.request import urlretrieve
4
+
5
+ import xmltodict
6
+
7
+ from .base import BaseDatasetProcessor, Sample
8
+
9
+ FILENAMES: list[str] = [
10
+ "Adjectives",
11
+ "Adverb",
12
+ "Attitudes",
13
+ "AuxiliaryVerb",
14
+ "CaseParticle",
15
+ "Comparatives",
16
+ "CompoundAdjective",
17
+ "CompoundVerb",
18
+ "Conditional",
19
+ "Conjunction",
20
+ "Coordination",
21
+ "Ellipsis",
22
+ "GeneralizedQuantifier",
23
+ "Modality",
24
+ "NP",
25
+ "NewAdjective",
26
+ "NominalAnaphora",
27
+ "Plurals",
28
+ "Question",
29
+ "TemporalReference",
30
+ "Toritate",
31
+ "Verbs",
32
+ ]
33
+
34
+
35
+ class JSeMDatasetProcessor(BaseDatasetProcessor):
36
+ data_name = "jsem"
37
+
38
+ def __init__(self, dataset_dir: Path, version_name: str) -> None:
39
+ super().__init__(dataset_dir, version_name)
40
+ self.output_info.instruction = "前提と仮説の関係をyes、no、unknown、undefの中から回答してください。それ以外には何も含めないことを厳守してください。\n\n制約:\n- 前提が仮説を含意する場合はyesと出力\n- 前提が仮説の否定を含意する場合はnoと出力\n- 前提が仮説を含意せず、その否定も含意しない場合はunknownと出力\n- 与えられた情報のみからは判断ができない場合はundefと出力"
41
+ self.output_info.output_length = 3
42
+ self.output_info.metrics = ["exact_match"]
43
+
44
+ def download(self):
45
+ for filename in FILENAMES:
46
+ raw_path: Path = self.raw_dir / f"{self.data_name}_{filename}.xml"
47
+ if not raw_path.exists():
48
+ urlretrieve(
49
+ f"https://raw.githubusercontent.com/DaisukeBekki/JSeM/master/data/v1.0/{filename}.xml",
50
+ str(raw_path),
51
+ )
52
+
53
+ def preprocess_evaluation_data(self):
54
+ samples: list[Sample] = []
55
+ for filename in FILENAMES:
56
+ with (self.raw_dir / f"{self.data_name}_{filename}.xml").open() as f:
57
+ dict_data: dict = xmltodict.parse(f.read())
58
+ for problem in dict_data["jsem-dataset"]["problem"]:
59
+ if problem["@answer"] in [
60
+ "",
61
+ "infelicitous",
62
+ "unacceptable",
63
+ "weakacceptable",
64
+ ]:
65
+ # we do not use 'infelicitous', 'unacceptable', 'weakacceptable' labels
66
+ continue
67
+ premise: str = (
68
+ "".join(p["script"] for p in problem["p"])
69
+ if isinstance(problem["p"], list)
70
+ else problem["p"]["script"]
71
+ )
72
+ hypothesis: str = problem["h"]["script"]
73
+ samples.append(
74
+ Sample(
75
+ input=f"前提:{premise}\n仮説:{hypothesis}",
76
+ output=problem["@answer"],
77
+ )
78
+ )
79
+
80
+ random.seed(42)
81
+ random.shuffle(samples)
82
+ self._save_evaluation_data(
83
+ samples[: int(len(samples) * 0.8)],
84
+ self.evaluation_dir / "train" / f"{self.data_name}.json",
85
+ )
86
+ self._save_evaluation_data(
87
+ samples[int(len(samples) * 0.8) : int(len(samples) * 0.9)],
88
+ self.evaluation_dir / "dev" / f"{self.data_name}.json",
89
+ )
90
+ self._save_evaluation_data(
91
+ samples[int(len(samples) * 0.9) :],
92
+ self.evaluation_dir / "test" / f"{self.data_name}.json",
93
+ )
jsick.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ from pathlib import Path
3
+ from urllib.request import urlretrieve
4
+
5
+ from .base import BaseDatasetProcessor, Sample
6
+
7
+
8
+ class JSICKDatasetProcessor(BaseDatasetProcessor):
9
+ data_name = "jsick"
10
+
11
+ def __init__(self, dataset_dir: Path, version_name: str) -> None:
12
+ super().__init__(dataset_dir, version_name)
13
+ self.output_info.instruction = "前提と仮説の関係をentailment、contradiction、neutralの中から回答してください。それ以外には何も含めないことを厳守してください。\n\n制約:\n- 前提が真であるとき仮説が必ず真になる場合はentailmentと出力\n- 前提が真であるとき仮説が必ず偽になる場合はcontradictionと出力\n- そのいずれでもない場合はneutralと出力"
14
+ self.output_info.output_length = 3
15
+ self.output_info.metrics = ["exact_match"]
16
+
17
+ def download(self):
18
+ raw_train_path: Path = self.raw_dir / f"{self.data_name}_train.tsv"
19
+ if not raw_train_path.exists():
20
+ urlretrieve(
21
+ "https://raw.githubusercontent.com/verypluming/JSICK/main/jsick/train.tsv",
22
+ str(raw_train_path),
23
+ )
24
+ raw_test_path: Path = self.raw_dir / f"{self.data_name}_test.tsv"
25
+ if not raw_test_path.exists():
26
+ urlretrieve(
27
+ "https://raw.githubusercontent.com/verypluming/JSICK/main/jsick/test.tsv",
28
+ str(raw_test_path),
29
+ )
30
+
31
+ def preprocess_evaluation_data(self):
32
+ train_dev_samples: list[Sample] = []
33
+ with (self.raw_dir / f"{self.data_name}_train.tsv").open() as f_train:
34
+ next(f_train)
35
+ for line in f_train:
36
+ row: list[str] = line.split("\t")
37
+ train_dev_samples.append(
38
+ Sample(input=f"前提:{row[8]}\n仮説:{row[9]}", output=row[10])
39
+ )
40
+ random.seed(42)
41
+ random.shuffle(train_dev_samples)
42
+ self._save_evaluation_data(
43
+ train_dev_samples[: int(len(train_dev_samples) * 0.9)],
44
+ self.evaluation_dir / "train" / f"{self.data_name}.json",
45
+ )
46
+ self._save_evaluation_data(
47
+ train_dev_samples[int(len(train_dev_samples) * 0.9) :],
48
+ self.evaluation_dir / "dev" / f"{self.data_name}.json",
49
+ )
50
+
51
+ test_samples: list[Sample] = []
52
+ with (self.raw_dir / f"{self.data_name}_test.tsv").open() as f_test:
53
+ next(f_test)
54
+ for line in f_test:
55
+ row: list[str] = line.split("\t")
56
+ test_samples.append(
57
+ Sample(input=f"前提:{row[8]}\n仮説:{row[9]}", output=row[10])
58
+ )
59
+ self._save_evaluation_data(
60
+ test_samples, self.evaluation_dir / "test" / f"{self.data_name}.json"
61
+ )
jsquad.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import random
3
+ from pathlib import Path
4
+ from urllib.request import urlretrieve
5
+
6
+ from .base import BaseDatasetProcessor, Sample
7
+
8
+
9
+ class JSQuADDatasetProcessor(BaseDatasetProcessor):
10
+ data_name = "jsquad"
11
+
12
+ def __init__(self, dataset_dir: Path, version_name: str) -> None:
13
+ super().__init__(dataset_dir, version_name)
14
+ self.output_info.instruction = "質問に対する回答を文章から一言で抽出してください。回答は名詞で答えてください。 それ以外には何も含めないことを厳守してください。"
15
+ self.output_info.output_length = 25
16
+ self.output_info.metrics = ["char_f1"]
17
+
18
+ def download(self):
19
+ raw_train_path: Path = self.raw_dir / f"{self.data_name}_train.json"
20
+ if not raw_train_path.exists():
21
+ urlretrieve(
22
+ "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jsquad-v1.1/train-v1.1.json",
23
+ str(raw_train_path),
24
+ )
25
+ raw_test_path: Path = self.raw_dir / f"{self.data_name}_test.json"
26
+ if not raw_test_path.exists():
27
+ urlretrieve(
28
+ "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jsquad-v1.1/valid-v1.1.json",
29
+ str(raw_test_path),
30
+ )
31
+
32
+ def preprocess_evaluation_data(self):
33
+ train_dev_samples: list[Sample] = []
34
+ with (self.raw_dir / f"{self.data_name}_train.json").open(
35
+ encoding="utf-8"
36
+ ) as f_train:
37
+ sample_dict: dict = json.load(f_train)
38
+ for problem in sample_dict["data"]:
39
+ for p in problem["paragraphs"]:
40
+ for q in p["qas"]:
41
+ train_dev_samples.append(
42
+ Sample(
43
+ input=f"文章:{p['context']}\n質問:{q['question']}",
44
+ output=q["answers"][0]["text"],
45
+ )
46
+ )
47
+ random.seed(42)
48
+ random.shuffle(train_dev_samples)
49
+ self._save_evaluation_data(
50
+ train_dev_samples[: int(len(train_dev_samples) * 0.9)],
51
+ self.evaluation_dir / "train" / f"{self.data_name}.json",
52
+ )
53
+ self._save_evaluation_data(
54
+ train_dev_samples[int(len(train_dev_samples) * 0.9) :],
55
+ self.evaluation_dir / "dev" / f"{self.data_name}.json",
56
+ )
57
+
58
+ test_samples: list[Sample] = []
59
+ with (self.raw_dir / f"{self.data_name}_test.json").open(
60
+ encoding="utf-8"
61
+ ) as f_test:
62
+ sample_dict: dict = json.load(f_test)
63
+ for problem in sample_dict["data"]:
64
+ for p in problem["paragraphs"]:
65
+ for q in p["qas"]:
66
+ test_samples.append(
67
+ Sample(
68
+ input=f"文章:{p['context']}\n質問:{q['question']}",
69
+ output=q["answers"][0]["text"],
70
+ )
71
+ )
72
+ self._save_evaluation_data(
73
+ test_samples, self.evaluation_dir / "test" / f"{self.data_name}.json"
74
+ )
jsts.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import random
3
+ from pathlib import Path
4
+ from urllib.request import urlretrieve
5
+
6
+ from .base import BaseDatasetProcessor, Sample
7
+
8
+
9
+ class JSTSDatasetProcessor(BaseDatasetProcessor):
10
+ data_name = "jsts"
11
+
12
+ def __init__(self, dataset_dir: Path, version_name: str) -> None:
13
+ super().__init__(dataset_dir, version_name)
14
+ self.output_info.instruction = "日本語の文ペアの意味がどのくらい近いかを判定し、類似度を0.0〜5.0までの間の値で付与してください。0.0に近いほど文ペアの意味が異なり、5.0に近いほど文ペアの意味が似ていることを表しています。整数値のみを返し、それ以外には何も含めないことを厳守してください。"
15
+ self.output_info.output_length = 3
16
+ self.output_info.metrics = ["pearson", "spearman"]
17
+
18
+ def download(self):
19
+ raw_train_path: Path = self.raw_dir / f"{self.data_name}_train.json"
20
+ if not raw_train_path.exists():
21
+ urlretrieve(
22
+ "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jsts-v1.1/train-v1.1.json",
23
+ str(raw_train_path),
24
+ )
25
+ raw_test_path: Path = self.raw_dir / f"{self.data_name}_test.json"
26
+ if not raw_test_path.exists():
27
+ urlretrieve(
28
+ "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jsts-v1.1/valid-v1.1.json",
29
+ str(raw_test_path),
30
+ )
31
+
32
+ def preprocess_evaluation_data(self):
33
+ train_dev_samples: list[dict[str, str]] = []
34
+ with (self.raw_dir / f"{self.data_name}_train.json").open(
35
+ encoding="utf-8"
36
+ ) as f_train:
37
+ for line in f_train:
38
+ sample_dict: dict = json.loads(line.strip())
39
+ train_dev_samples.append(
40
+ Sample(
41
+ input=f"文1:{sample_dict['sentence1']}\n文2:{sample_dict['sentence2']}",
42
+ output=str(sample_dict["label"]),
43
+ )
44
+ )
45
+ random.seed(42)
46
+ random.shuffle(train_dev_samples)
47
+ self._save_evaluation_data(
48
+ train_dev_samples[: int(len(train_dev_samples) * 0.9)],
49
+ self.evaluation_dir / "train" / f"{self.data_name}.json",
50
+ )
51
+ self._save_evaluation_data(
52
+ train_dev_samples[int(len(train_dev_samples) * 0.9) :],
53
+ self.evaluation_dir / "dev" / f"{self.data_name}.json",
54
+ )
55
+
56
+ test_samples: list[Sample] = []
57
+ with (self.raw_dir / f"{self.data_name}_test.json").open(
58
+ encoding="utf-8"
59
+ ) as f_test:
60
+ for line in f_test:
61
+ sample_dict: dict = json.loads(line.strip())
62
+ test_samples.append(
63
+ Sample(
64
+ input=f"文1:{sample_dict['sentence1']}\n文2:{sample_dict['sentence2']}",
65
+ output=str(sample_dict["label"]),
66
+ )
67
+ )
68
+ self._save_evaluation_data(
69
+ test_samples, self.evaluation_dir / "test" / f"{self.data_name}.json"
70
+ )
llm-jp-eval.py ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import json
4
+ from pathlib import Path
5
+ from typing import Generator
6
+
7
+ import datasets
8
+
9
+ from .base import BaseDatasetProcessor
10
+ from .chabsa import ChabsaDatasetProcessor
11
+ from .coreference import WikipediaCoreferenceDatasetProcessor
12
+ from .dependency import WikipediaDependencyDatasetProcessor
13
+ from .jamp import JAMPDatasetProcessor
14
+ from .janli import JaNLIDatasetProcessor
15
+ from .jcommonsenseqa import JCommonsenseQADatasetProcessor
16
+ from .jemhopqa import JEMHopQADatasetProcessor
17
+ from .jnli import JNLIDatasetProcessor
18
+ from .jsem import JSeMDatasetProcessor
19
+ from .jsick import JSICKDatasetProcessor
20
+ from .jsquad import JSQuADDatasetProcessor
21
+ from .jsts import JSTSDatasetProcessor
22
+ from .mawps import MawpsDatasetProcessor
23
+ from .ner import WikipediaNERDatasetProcessor
24
+ from .niilc import NIILCDatasetProcessor
25
+ from .pas import WikipediaPASDatasetProcessor
26
+ from .reading import WikipediaReadingDatasetProcessor
27
+ from .wiki_base import WikipediaBaseDatasetProcessor
28
+
29
+ _CITATION = ""
30
+ _DESCRIPTION = "These are datasets including the benchmark 'llm-jp-eval.'"
31
+ _HOMEPAGE = "https://github.com/llm-jp/llm-jp-eval/tree/v1.3.0"
32
+ _LICENSE = "This work is license under Apache-2.0 license"
33
+ _VERSION = datasets.Version("1.3.0")
34
+
35
+
36
+ class LlmJpEvalConfig(datasets.BuilderConfig):
37
+ def __init__(
38
+ self,
39
+ name: str = "default",
40
+ version: datasets.Version | str | None = _VERSION,
41
+ data_dir: str | None = None,
42
+ data_files: datasets.data_files.DataFilesDict | None = None,
43
+ description: str | None = _DESCRIPTION,
44
+ output_dir: str = "./data_llm-jp-eval",
45
+ ) -> None:
46
+ super().__init__(
47
+ name=name,
48
+ version=version,
49
+ data_dir=data_dir,
50
+ data_files=data_files,
51
+ description=description,
52
+ )
53
+ self.output_dir = output_dir
54
+
55
+
56
+ class LlmJpEval(datasets.GeneratorBasedBuilder):
57
+
58
+ BUILDER_CONFIGS = [
59
+ LlmJpEvalConfig(name="jamp"),
60
+ LlmJpEvalConfig(name="janli"),
61
+ LlmJpEvalConfig(name="jnli"),
62
+ LlmJpEvalConfig(name="jsem"),
63
+ LlmJpEvalConfig(name="jsick"),
64
+ LlmJpEvalConfig(name="jemhopqa"),
65
+ LlmJpEvalConfig(name="niilc"),
66
+ LlmJpEvalConfig(name="jsquad"),
67
+ LlmJpEvalConfig(name="jcommonsenseqa"),
68
+ LlmJpEvalConfig(name="chabsa"),
69
+ LlmJpEvalConfig(name="wiki_reading"),
70
+ LlmJpEvalConfig(name="wiki_ner"),
71
+ LlmJpEvalConfig(name="wiki_dependency"),
72
+ LlmJpEvalConfig(name="wiki_pas"),
73
+ LlmJpEvalConfig(name="wiki_coreference"),
74
+ LlmJpEvalConfig(name="mawps"),
75
+ LlmJpEvalConfig(name="jsts"),
76
+ ]
77
+
78
+ def _info(self) -> datasets.DatasetInfo:
79
+ return datasets.DatasetInfo(
80
+ description=_DESCRIPTION,
81
+ citation=_CITATION,
82
+ homepage=_HOMEPAGE,
83
+ license=_LICENSE,
84
+ features=datasets.Features(
85
+ {
86
+ "input": datasets.Value("string"),
87
+ "output": datasets.Value("string"),
88
+ }
89
+ ),
90
+ )
91
+
92
+ def _split_generators(
93
+ self, dl_manager: datasets.DownloadManager
94
+ ) -> list[datasets.SplitGenerator]:
95
+ output_dir = Path(self.config.output_dir)
96
+ version_name = self.config.version.version_str
97
+ dataset_name = self.config.name
98
+
99
+ if dataset_name == "jamp":
100
+ processor = JAMPDatasetProcessor
101
+ elif dataset_name == "janli":
102
+ processor = JaNLIDatasetProcessor
103
+ elif dataset_name == "jnli":
104
+ processor = JNLIDatasetProcessor
105
+ elif dataset_name == "jsem":
106
+ processor = JSeMDatasetProcessor
107
+ elif dataset_name == "jsick":
108
+ processor = JSICKDatasetProcessor
109
+ elif dataset_name == "jemhopqa":
110
+ processor = JEMHopQADatasetProcessor
111
+ elif dataset_name == "niilc":
112
+ processor = NIILCDatasetProcessor
113
+ elif dataset_name == "jsquad":
114
+ processor = JSQuADDatasetProcessor
115
+ elif dataset_name == "jcommonsenseqa":
116
+ processor = JCommonsenseQADatasetProcessor
117
+ elif dataset_name == "chabsa":
118
+ processor = ChabsaDatasetProcessor
119
+ elif dataset_name == "wiki_reading":
120
+ processor = WikipediaReadingDatasetProcessor
121
+ elif dataset_name == "wiki_ner":
122
+ processor = WikipediaNERDatasetProcessor
123
+ elif dataset_name == "wiki_dependency":
124
+ processor = WikipediaDependencyDatasetProcessor
125
+ elif dataset_name == "wiki_pas":
126
+ processor = WikipediaPASDatasetProcessor
127
+ elif dataset_name == "wiki_coreference":
128
+ processor = WikipediaCoreferenceDatasetProcessor
129
+ elif dataset_name == "mawps":
130
+ processor = MawpsDatasetProcessor
131
+ elif dataset_name == "jsts":
132
+ processor = JSTSDatasetProcessor
133
+
134
+ processor(output_dir, version_name).pipeline()
135
+
136
+ eval_dir = output_dir / version_name / "evaluation"
137
+ with (eval_dir / "train" / f"{dataset_name}.json").open(encoding="utf-8") as f:
138
+ train_data = json.load(f)
139
+ with (eval_dir / "dev" / f"{dataset_name}.json").open(encoding="utf-8") as f:
140
+ validation_data = json.load(f)
141
+ with (eval_dir / "test" / f"{dataset_name}.json").open(encoding="utf-8") as f:
142
+ test_data = json.load(f)
143
+
144
+ return [
145
+ datasets.SplitGenerator(
146
+ name=datasets.Split.TRAIN, gen_kwargs={"data": train_data["samples"]}
147
+ ),
148
+ datasets.SplitGenerator(
149
+ name=datasets.Split.VALIDATION,
150
+ gen_kwargs={"data": validation_data["samples"]},
151
+ ),
152
+ datasets.SplitGenerator(
153
+ name=datasets.Split.TEST, gen_kwargs={"data": test_data["samples"]}
154
+ ),
155
+ ]
156
+
157
+ def _generate_examples(self, data: list[dict[str, str]]) -> Generator:
158
+ for i, d in enumerate(data):
159
+ yield i, d
mawps.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import random
3
+ from pathlib import Path
4
+ from urllib.request import urlretrieve
5
+
6
+ from .base import BaseDatasetProcessor, Sample
7
+
8
+
9
+ class MawpsDatasetProcessor(BaseDatasetProcessor):
10
+ data_name = "mawps"
11
+
12
+ def __init__(self, dataset_dir: Path, version_name: str) -> None:
13
+ super().__init__(dataset_dir, version_name)
14
+ self.output_info.instruction = "与えられた計算問題に対する答えを整数または小数で出力してください。数値のみを出力し、それ以外には何も含めないことを厳守してください。"
15
+ self.output_info.output_length = 10
16
+ self.output_info.metrics = ["exact_match"]
17
+
18
+ def download(self):
19
+ dataset_url_base = "https://raw.githubusercontent.com/nlp-waseda/chain-of-thought-ja-dataset/2ad9fcbc597e70424f0b40ee2749570ba3f581bf/dataset/mawps/"
20
+ raw_path: Path = self.raw_dir / self.data_name
21
+
22
+ if not raw_path.exists():
23
+ raw_path.mkdir()
24
+ for file_name in [
25
+ "zero_shot_example.json",
26
+ "shot_example.json",
27
+ "test.json",
28
+ ]:
29
+ urlretrieve(
30
+ dataset_url_base + file_name,
31
+ str(raw_path / file_name),
32
+ )
33
+
34
+ def preprocess_evaluation_data(self):
35
+ qa_delimiter = "\n解答:"
36
+ train_samples: list[Sample] = []
37
+
38
+ # Extract training samples from
39
+ # zero_shot_example.json and shot_example.json
40
+ raw_path = self.raw_dir / self.data_name
41
+ with open(raw_path / "zero_shot_example.json") as f:
42
+ zero_shot_example: list[dict[str, str]] = json.load(f)
43
+ with open(raw_path / "shot_example.json") as f:
44
+ shot_example: list[dict[str, str]] = json.load(f)
45
+ for example in zero_shot_example + shot_example:
46
+ [question, answer] = example["shot_example"].split(qa_delimiter)
47
+ answer_num_string = answer.split("答えは")[1].split("です。")[0]
48
+ train_samples.append(Sample(input=question, output=answer_num_string))
49
+
50
+ test_samples: list[Sample] = []
51
+ # Split test.json into dev & test sets
52
+ with open(raw_path / "test.json") as f:
53
+ test_example: list[dict] = json.load(f)
54
+
55
+ for example in test_example:
56
+ question = example["question"].split(qa_delimiter)[0]
57
+ answer = example["answer"]
58
+ test_samples.append(Sample(input=question, output=answer))
59
+
60
+ # Shuffle the test samples
61
+ random.seed(42)
62
+ random.shuffle(test_samples)
63
+
64
+ self._save_evaluation_data(
65
+ train_samples,
66
+ self.evaluation_dir / "train" / f"{self.data_name}.json",
67
+ )
68
+ self._save_evaluation_data(
69
+ test_samples[: int(len(test_samples) / 2)],
70
+ self.evaluation_dir / "dev" / f"{self.data_name}.json",
71
+ )
72
+ self._save_evaluation_data(
73
+ test_samples[int(len(test_samples) / 2) :],
74
+ self.evaluation_dir / "test" / f"{self.data_name}.json",
75
+ )
ner.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import textwrap
3
+ from pathlib import Path
4
+
5
+ from rhoknp import Document
6
+ from rhoknp.props.named_entity import NamedEntityCategory
7
+
8
+ from .base import OutputInfo, Sample
9
+ from .wiki_base import WikipediaBaseDatasetProcessor
10
+
11
+
12
+ class WikipediaNERDatasetProcessor(WikipediaBaseDatasetProcessor):
13
+ data_name = "wiki_ner"
14
+ NE_CATEGORY_TO_TEXT = {
15
+ NamedEntityCategory.ORGANIZATION: "組織名",
16
+ NamedEntityCategory.PERSON: "人名",
17
+ NamedEntityCategory.LOCATION: "地名",
18
+ NamedEntityCategory.ARTIFACT: "固有物名",
19
+ NamedEntityCategory.DATE: "日付表現",
20
+ NamedEntityCategory.TIME: "時刻表現",
21
+ NamedEntityCategory.MONEY: "金額表現",
22
+ NamedEntityCategory.PERCENT: "割合表現",
23
+ }
24
+ DELIMITER = " "
25
+
26
+ def __init__(self, dataset_dir: Path, version_name: str) -> None:
27
+ output_info = OutputInfo(
28
+ instruction=textwrap.dedent(
29
+ f"""\
30
+ 与えられたテキストから固有表現({"、".join(self.NE_CATEGORY_TO_TEXT.values())})を全て抽出してください。回答の他には何も含めないことを厳守してください。回答には「固有表現1(種類1){self.DELIMITER}固有表現2(種類2)」のように固有表現の種類も含めてください。
31
+ """
32
+ ).rstrip(),
33
+ output_length=256, # Max number of tokens tokenized by `llm-jp/llm-jp-1.3b-v1.0` is 221.
34
+ metrics=["set_f1"],
35
+ few_shots=[],
36
+ samples=[],
37
+ )
38
+ super().__init__(dataset_dir, version_name, output_info)
39
+
40
+ @staticmethod
41
+ def convert_document_to_sample(document: Document) -> Sample:
42
+ parenthesis_pat = re.compile(r"括弧始:(\S+) 括弧終:(\S+) 括弧位置:(\d+)")
43
+ doc_text = ""
44
+ sentence_iter = iter(document.sentences)
45
+ while sentence := next(sentence_iter, None):
46
+ text: str = sentence.text
47
+ if "括弧削除" in sentence.misc_comment:
48
+ sentence = next(sentence_iter)
49
+ match = parenthesis_pat.search(sentence.misc_comment)
50
+ assert match is not None
51
+ par_start: str = match.group(1)
52
+ par_end: str = match.group(2)
53
+ par_pos = int(match.group(3))
54
+ text = (
55
+ text[:par_pos]
56
+ + par_start
57
+ + sentence.text
58
+ + par_end
59
+ + text[par_pos:]
60
+ ) # resurrect parentheses
61
+ doc_text += text
62
+ ne_texts: list[str] = []
63
+ for named_entity in document.named_entities:
64
+ if named_entity.category == NamedEntityCategory.OPTIONAL:
65
+ continue
66
+ ne_texts.append(
67
+ f"{named_entity.text}({WikipediaNERDatasetProcessor.NE_CATEGORY_TO_TEXT[named_entity.category]})"
68
+ )
69
+ return Sample(
70
+ input=doc_text, output=WikipediaNERDatasetProcessor.DELIMITER.join(ne_texts)
71
+ )
niilc.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ from pathlib import Path
3
+ from urllib.request import urlretrieve
4
+
5
+ import xmltodict
6
+
7
+ from .base import BaseDatasetProcessor, Sample
8
+
9
+
10
+ class NIILCDatasetProcessor(BaseDatasetProcessor):
11
+ data_name = "niilc"
12
+
13
+ def __init__(self, dataset_dir: Path, version_name: str) -> None:
14
+ super().__init__(dataset_dir, version_name)
15
+ self.output_info.instruction = "質問に対する答えを出力してください。回答の他には何も含めないことを厳守してください。答えが複数の場合、コンマ(,)で繋げてください。"
16
+ self.output_info.output_length = 180
17
+ self.output_info.metrics = ["char_f1"]
18
+
19
+ def download(self):
20
+ raw_train_path: Path = self.raw_dir / f"{self.data_name}_train.xml"
21
+ if not raw_train_path.exists():
22
+ urlretrieve(
23
+ "https://raw.githubusercontent.com/mynlp/niilc-qa/master/data/NIILC-ECQA2015_dev.xml",
24
+ str(raw_train_path),
25
+ )
26
+ raw_test_path: Path = self.raw_dir / f"{self.data_name}_test.xml"
27
+ if not raw_test_path.exists():
28
+ urlretrieve(
29
+ "https://raw.githubusercontent.com/mynlp/niilc-qa/master/data/NIILC-ECQA2015_test.xml",
30
+ str(raw_test_path),
31
+ )
32
+
33
+ def preprocess_evaluation_data(self):
34
+ train_dev_samples: list[Sample] = []
35
+ with (self.raw_dir / f"{self.data_name}_train.xml").open() as f:
36
+ dict_data: dict = xmltodict.parse(f.read())
37
+ for problem in dict_data["questions"]["question"]:
38
+ if isinstance(problem["answers"]["answer"], list):
39
+ answer: str = ",".join(
40
+ [ans for ans in problem["answers"]["answer"] if ans]
41
+ )
42
+ else:
43
+ answer = problem["answers"]["answer"]
44
+ if answer == "-":
45
+ continue
46
+ train_dev_samples.append(
47
+ Sample(input=f"質問:{problem['text']}", output=answer)
48
+ )
49
+ random.seed(42)
50
+ random.shuffle(train_dev_samples)
51
+ self._save_evaluation_data(
52
+ train_dev_samples[: int(len(train_dev_samples) * 0.9)],
53
+ self.evaluation_dir / "train" / f"{self.data_name}.json",
54
+ )
55
+ self._save_evaluation_data(
56
+ train_dev_samples[int(len(train_dev_samples) * 0.9) :],
57
+ self.evaluation_dir / "dev" / f"{self.data_name}.json",
58
+ )
59
+
60
+ test_samples: list[Sample] = []
61
+ with (self.raw_dir / f"{self.data_name}_test.xml").open() as f:
62
+ dict_data: dict = xmltodict.parse(f.read())
63
+ for problem in dict_data["questions"]["question"]:
64
+ if isinstance(problem["answers"]["answer"], list):
65
+ answer: str = ",".join(
66
+ [ans for ans in problem["answers"]["answer"] if ans]
67
+ )
68
+ else:
69
+ answer = problem["answers"]["answer"]
70
+ if answer == "-":
71
+ continue
72
+ test_samples.append(
73
+ Sample(input=f"質問:{problem['text']}", output=answer)
74
+ )
75
+ self._save_evaluation_data(
76
+ test_samples, self.evaluation_dir / "test" / f"{self.data_name}.json"
77
+ )
pas.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import textwrap
3
+ from pathlib import Path
4
+
5
+ from rhoknp import Document
6
+ from rhoknp.cohesion import EndophoraArgument, Predicate
7
+
8
+ from .base import OutputInfo, Sample
9
+ from .wiki_base import WikipediaBaseDatasetProcessor, convert_base_phrase_to_text
10
+
11
+
12
+ class WikipediaPASDatasetProcessor(WikipediaBaseDatasetProcessor):
13
+ data_name = "wiki_pas"
14
+ PAS_CASES = [
15
+ "ガ",
16
+ "デ",
17
+ "ト",
18
+ "ニ",
19
+ "ヘ",
20
+ "ヲ",
21
+ "カラ",
22
+ "ガ2",
23
+ "マデ",
24
+ "ヨリ",
25
+ ]
26
+ INNER_DELIMITER = " "
27
+ OUTER_DELIMITER = "\n"
28
+
29
+ def __init__(self, dataset_dir: Path, version_name: str) -> None:
30
+ output_info = OutputInfo(
31
+ instruction=textwrap.dedent(
32
+ """\
33
+ 与えられたテキストから述語項構造を全て抽出してください。回答の他には何も含めないことを厳守してください。回答は以下のような形式で答えてください。
34
+ 述語1 ガ:項1 ヲ:項2 ニ:項3
35
+ 述語2 ガ:項4 ヲ:項5
36
+ """
37
+ ).rstrip(),
38
+ output_length=512, # Max number of tokens tokenized by `llm-jp/llm-jp-1.3b-v1.0` is 412.
39
+ metrics=["set_f1"],
40
+ few_shots=[],
41
+ samples=[],
42
+ )
43
+ super().__init__(dataset_dir, version_name, output_info)
44
+
45
+ @staticmethod
46
+ def convert_document_to_sample(document: Document) -> Sample:
47
+ parenthesis_pat = re.compile(r"括弧始:(\S+) 括弧終:(\S+) 括弧位置:(\d+)")
48
+ doc_text = ""
49
+ sentence_iter = iter(document.sentences)
50
+ while sentence := next(sentence_iter, None):
51
+ text: str = sentence.text
52
+ if "括弧削除" in sentence.misc_comment:
53
+ sentence = next(sentence_iter)
54
+ match = parenthesis_pat.search(sentence.misc_comment)
55
+ assert match is not None
56
+ par_start: str = match.group(1)
57
+ par_end: str = match.group(2)
58
+ par_pos = int(match.group(3))
59
+ text = (
60
+ text[:par_pos]
61
+ + par_start
62
+ + sentence.text
63
+ + par_end
64
+ + text[par_pos:]
65
+ ) # resurrect parentheses
66
+ doc_text += text
67
+ pas_texts: list[str] = []
68
+ for pas in document.pas_list:
69
+ argument_text = ""
70
+ for case in WikipediaPASDatasetProcessor.PAS_CASES:
71
+ for argument in pas.get_arguments(case, relax=False):
72
+ if not isinstance(argument, EndophoraArgument):
73
+ continue
74
+ if argument.phrase == pas.predicate.phrase:
75
+ continue
76
+ if isinstance(argument, EndophoraArgument):
77
+ case_text = case if case != "ガ2" else "ガ"
78
+ arg_text = convert_base_phrase_to_text(argument.base_phrase)
79
+ argument_text += f"{WikipediaPASDatasetProcessor.INNER_DELIMITER}{case_text}:{arg_text}"
80
+ predicate_text: str = (
81
+ WikipediaPASDatasetProcessor._convert_predicate_to_text(pas.predicate)
82
+ )
83
+ if predicate_text and argument_text:
84
+ pas_texts.append(f"{predicate_text}{argument_text}")
85
+ return Sample(
86
+ input=doc_text,
87
+ output=WikipediaPASDatasetProcessor.OUTER_DELIMITER.join(pas_texts),
88
+ )
89
+
90
+ @staticmethod
91
+ def _convert_predicate_to_text(predicate: Predicate) -> str:
92
+ """Get the core text without ancillary words for a predicate."""
93
+ morphemes = predicate.phrase.morphemes
94
+ start_index = 0
95
+ for morpheme in morphemes:
96
+ if morpheme.pos in ("助詞", "特殊", "判定詞"):
97
+ start_index += 1
98
+ else:
99
+ break
100
+ end_index = len(morphemes)
101
+ for morpheme in reversed(morphemes):
102
+ if morpheme.pos in ("助詞", "特殊"):
103
+ end_index -= 1
104
+ else:
105
+ break
106
+ ret = "".join(m.text for m in morphemes[start_index:end_index])
107
+ if not ret:
108
+ start_index = 0
109
+ end_index = len(morphemes)
110
+ return "".join(m.text for m in morphemes[start_index:end_index])
reading.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import textwrap
2
+ from pathlib import Path
3
+
4
+ from rhoknp import Document, Morpheme
5
+
6
+ from .base import OutputInfo, Sample
7
+ from .wiki_base import WikipediaBaseDatasetProcessor
8
+
9
+ _ALPHABETS = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
10
+ _ALPH_READINGS = [
11
+ "えー",
12
+ "びー",
13
+ "しー",
14
+ "でぃー",
15
+ "いー",
16
+ "えふ",
17
+ "じー",
18
+ "えいち",
19
+ "あい",
20
+ "じぇー",
21
+ "けー",
22
+ "える",
23
+ "えむ",
24
+ "えぬ",
25
+ "おー",
26
+ "ぴー",
27
+ "きゅー",
28
+ "あーる",
29
+ "えす",
30
+ "てぃー",
31
+ "ゆー",
32
+ "ぶい",
33
+ "だぶりゅー",
34
+ "えっくす",
35
+ "わい",
36
+ "ぜっと",
37
+ ]
38
+
39
+
40
+ class WikipediaReadingDatasetProcessor(WikipediaBaseDatasetProcessor):
41
+ data_name = "wiki_reading"
42
+ ALPH_TO_HIRA: dict[str, str] = {a: r for a, r in zip(_ALPHABETS, _ALPH_READINGS)}
43
+
44
+ def __init__(self, dataset_dir: Path, version_name: str) -> None:
45
+ output_info = OutputInfo(
46
+ instruction=textwrap.dedent(
47
+ """\
48
+ 与えられたテキストを全てひらがなに変換してください。回答の他には何も含めないことを厳守してください。
49
+ """
50
+ ).rstrip(),
51
+ output_length=512, # Max number of tokens tokenized by `llm-jp/llm-jp-1.3b-v1.0` is 363.
52
+ metrics=["char_f1"],
53
+ few_shots=[],
54
+ samples=[],
55
+ )
56
+ super().__init__(dataset_dir, version_name, output_info)
57
+
58
+ @staticmethod
59
+ def convert_document_to_sample(document: Document) -> Sample:
60
+ text = ""
61
+ reading = ""
62
+ for sentence in document.sentences:
63
+ if "括弧始" in sentence.misc_comment:
64
+ continue
65
+ text += sentence.text
66
+ reading += "".join(
67
+ WikipediaReadingDatasetProcessor._get_reading(morpheme)
68
+ for morpheme in sentence.morphemes
69
+ )
70
+ return Sample(input=text, output=reading)
71
+
72
+ @staticmethod
73
+ def _get_reading(morpheme: Morpheme) -> str:
74
+ # 熟字訓
75
+ if morpheme.reading in (" ", " ") and morpheme.text not in (" ", " "):
76
+ return ""
77
+ # some morphemes have multiple readings (e.g., にほん/にっぽん), so we just use the first one
78
+ reading = morpheme.reading.split("/")[0]
79
+ if all(char in _ALPHABETS for char in reading):
80
+ return "".join(
81
+ WikipediaReadingDatasetProcessor.ALPH_TO_HIRA[char] for char in reading
82
+ )
83
+ return reading
requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ xmltodict
wiki_base.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from pathlib import Path
3
+ from typing import Literal
4
+
5
+ import requests
6
+ from rhoknp import BasePhrase, Document
7
+ from typing_extensions import TypeAlias
8
+
9
+ from .base import BaseDatasetProcessor, OutputInfo, Sample
10
+
11
+ WAC_VERSION = "v1.1.2"
12
+
13
+ Split: TypeAlias = Literal["train", "dev", "test"]
14
+
15
+ logging.getLogger("rhoknp").setLevel(logging.ERROR)
16
+
17
+
18
+ class WikipediaBaseDatasetProcessor(BaseDatasetProcessor):
19
+ def __init__(
20
+ self, dataset_dir: Path, version_name: str, output_info: OutputInfo
21
+ ) -> None:
22
+ super().__init__(dataset_dir, version_name)
23
+ self.output_info = output_info
24
+
25
+ def download(self) -> None:
26
+ self._download_split("train")
27
+ self._download_split("dev")
28
+ self._download_split("test")
29
+
30
+ def _download_split(self, split: Split) -> None:
31
+ wac_base_url = f"https://raw.githubusercontent.com/ku-nlp/WikipediaAnnotatedCorpus/{WAC_VERSION}"
32
+ response = requests.get(f"{wac_base_url}/id/{split}.id", timeout=10)
33
+ response.raise_for_status()
34
+ doc_ids: list[str] = response.text.splitlines()
35
+ save_dir = self.raw_dir / split
36
+ save_dir.mkdir(exist_ok=True)
37
+ for doc_id in doc_ids:
38
+ if (raw_file := save_dir / f"{doc_id}.knp").exists():
39
+ continue
40
+ response = requests.get(
41
+ f"{wac_base_url}/knp/{doc_id[:8]}/{doc_id}.knp", timeout=10
42
+ )
43
+ response.raise_for_status()
44
+ raw_file.write_text(response.text, encoding="utf-8")
45
+
46
+ def preprocess_evaluation_data(self) -> None:
47
+ self._preprocess_evaluation_split("train")
48
+ self._preprocess_evaluation_split("dev")
49
+ self._preprocess_evaluation_split("test")
50
+
51
+ def _preprocess_evaluation_split(self, split: Split) -> None:
52
+ samples: list[Sample] = []
53
+ for knp_file in sorted(self.raw_dir.joinpath(split).glob("*.knp")):
54
+ document = Document.from_knp(knp_file.read_text(encoding="utf-8"))
55
+ sample = self.convert_document_to_sample(document)
56
+ if sample.output.strip() != "":
57
+ samples.append(sample)
58
+ self._save_evaluation_data(
59
+ samples, self.evaluation_dir / split / f"{self.data_name}.json"
60
+ )
61
+
62
+ @staticmethod
63
+ def convert_document_to_sample(document: Document) -> Sample:
64
+ raise NotImplementedError
65
+
66
+
67
+ def convert_base_phrase_to_text(base_phrase: BasePhrase) -> str:
68
+ base_phrases_within_phrase = base_phrase.phrase.base_phrases
69
+ anchor_index = base_phrases_within_phrase.index(base_phrase)
70
+ all_children = _find_children(base_phrase)
71
+ expanded_base_phrases = [base_phrase]
72
+ # forward search
73
+ for base_phrase_index in range(anchor_index + 1, len(base_phrases_within_phrase)):
74
+ if base_phrases_within_phrase[base_phrase_index] in all_children:
75
+ expanded_base_phrases.append(base_phrases_within_phrase[base_phrase_index])
76
+ else:
77
+ break
78
+ # backward search
79
+ for base_phrase_index in reversed(range(anchor_index)):
80
+ if base_phrases_within_phrase[base_phrase_index] in all_children:
81
+ expanded_base_phrases.append(base_phrases_within_phrase[base_phrase_index])
82
+ else:
83
+ break
84
+ expanded_base_phrases.sort(key=lambda bp: bp.index)
85
+ morphemes = [m for bp in expanded_base_phrases for m in bp.morphemes]
86
+ start_index = 0
87
+ for morpheme in morphemes:
88
+ if morpheme.pos in ("助詞", "特殊", "判定詞"):
89
+ start_index += 1
90
+ else:
91
+ break
92
+ end_index = len(morphemes)
93
+ for morpheme in reversed(morphemes):
94
+ if morpheme.pos in ("助詞", "特殊", "判定詞"):
95
+ end_index -= 1
96
+ else:
97
+ break
98
+ ret = "".join(m.text for m in morphemes[start_index:end_index])
99
+ if not ret:
100
+ start_index = 0
101
+ end_index = len(morphemes)
102
+ return "".join(m.text for m in morphemes[start_index:end_index])
103
+
104
+
105
+ def _find_children(node: BasePhrase) -> list[BasePhrase]:
106
+ """Find all dependents with DFS."""
107
+ if not node.children:
108
+ return [node]
109
+ results = [node]
110
+ for child in node.children:
111
+ results.extend(_find_children(child))
112
+ return results