File size: 3,147 Bytes
49eb12f f7d6c1c 49eb12f 1a68a58 49eb12f d37cf2e 0c482a2 49eb12f 1a68a58 49eb12f 1a68a58 49eb12f 1a68a58 49eb12f 1a68a58 49eb12f 1a68a58 49eb12f d37cf2e 49eb12f d37cf2e 49eb12f d37cf2e 20c5009 49eb12f e39dd70 49eb12f 05b69ca 1a68a58 d37cf2e 977bce8 d37cf2e 49eb12f 1a68a58 d37cf2e 49eb12f 05b69ca 49eb12f 05b69ca 49eb12f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
import json
from typing import Generator
import datasets
_CITATION = ""
_DESCRIPTION = "This is a dataset of Wikinews articles manually labeled with the named entity label."
_HOMEPAGE = "https://ja.wikinews.org/wiki/%E3%83%A1%E3%82%A4%E3%83%B3%E3%83%9A%E3%83%BC%E3%82%B8"
_LICENSE = "This work is licensed under CC BY 2.5"
_URL = "https://huggingface.co/datasets/llm-book/ner-wikinews-dataset/raw/main/annotated_wikinews.json"
class NerWikinewsDataset(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"curid": datasets.Value("string"),
"text": datasets.Value("string"),
"entities": [
{
"name": datasets.Value("string"),
"span": datasets.Sequence(
datasets.Value("int64"), length=2
),
"type": datasets.Value("string"),
}
],
}
),
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _convert_data_format(
self, annotated_data: list[dict[str, any]]
) -> list[dict[str, any]]:
outputs = []
for data in annotated_data:
if data["annotations"] == []:
continue
entities = []
for annotations in data["annotations"]:
for result in annotations["result"]:
entities.append(
{
"name": result["value"]["text"],
"span": [
result["value"]["start"],
result["value"]["end"],
],
"type": result["value"]["labels"][0],
}
)
if entities != []:
entities = sorted(entities, key=lambda x: x["span"][0])
outputs.append(
{
"curid": data["id"],
"text": data["data"]["text"],
"entities": entities,
}
)
return outputs
def _split_generators(
self, dl_manager: datasets.DownloadManager
) -> list[datasets.SplitGenerator]:
data_file = dl_manager.download_and_extract(_URL)
with open(data_file, "r", encoding="utf-8") as f:
data = json.load(f)
data = self._convert_data_format(data)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"data": data},
),
]
def _generate_examples(self, data: list[dict[str, str]]) -> Generator:
for key, d in enumerate(data):
yield key, {
"curid": d["curid"],
"text": d["text"],
"entities": d["entities"],
}
|