Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Norwegian
Size:
10K<n<100K
ArXiv:
License:
File size: 24,620 Bytes
662932e 0aa5144 869ab74 0aa5144 662932e 36ae5ff 662932e 1d89c57 ce386f3 4e9145d ce386f3 4e9145d ce386f3 ff91d80 ce386f3 4e9145d ce386f3 4e9145d ce386f3 ff91d80 ce386f3 4e9145d ce386f3 4e9145d ce386f3 ff91d80 ce386f3 4e9145d ce386f3 4e9145d ce386f3 ff91d80 ce386f3 4e9145d ce386f3 4e9145d ce386f3 ff91d80 ce386f3 4e9145d ce386f3 4e9145d ce386f3 ff91d80 ce386f3 4e9145d ce386f3 4e9145d ce386f3 ff91d80 ce386f3 4e9145d ce386f3 4e9145d ce386f3 ff91d80 ce386f3 4e9145d ce386f3 4e9145d ce386f3 ff91d80 ce386f3 662932e 44305d0 662932e 44305d0 662932e 905ed19 662932e ce386f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 |
---
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
language:
- 'no'
license:
- other
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: 'NorNE: Norwegian Named Entities'
dataset_info:
- config_name: bokmaal
features:
- name: idx
dtype: string
- name: lang
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': ADV
'14': INTJ
'15': VERB
'16': AUX
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-GPE_LOC
'6': I-GPE_LOC
'7': B-PROD
'8': I-PROD
'9': B-LOC
'10': I-LOC
'11': B-GPE_ORG
'12': I-GPE_ORG
'13': B-DRV
'14': I-DRV
'15': B-EVT
'16': I-EVT
'17': B-MISC
'18': I-MISC
splits:
- name: train
num_bytes: 10032169
num_examples: 15696
- name: validation
num_bytes: 1501730
num_examples: 2410
- name: test
num_bytes: 1234272
num_examples: 1939
download_size: 20909241
dataset_size: 12768171
- config_name: nynorsk
features:
- name: idx
dtype: string
- name: lang
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': ADV
'14': INTJ
'15': VERB
'16': AUX
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-GPE_LOC
'6': I-GPE_LOC
'7': B-PROD
'8': I-PROD
'9': B-LOC
'10': I-LOC
'11': B-GPE_ORG
'12': I-GPE_ORG
'13': B-DRV
'14': I-DRV
'15': B-EVT
'16': I-EVT
'17': B-MISC
'18': I-MISC
splits:
- name: train
num_bytes: 10072260
num_examples: 14174
- name: validation
num_bytes: 1278029
num_examples: 1890
- name: test
num_bytes: 1023358
num_examples: 1511
download_size: 20209253
dataset_size: 12373647
- config_name: combined
features:
- name: idx
dtype: string
- name: lang
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': ADV
'14': INTJ
'15': VERB
'16': AUX
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-GPE_LOC
'6': I-GPE_LOC
'7': B-PROD
'8': I-PROD
'9': B-LOC
'10': I-LOC
'11': B-GPE_ORG
'12': I-GPE_ORG
'13': B-DRV
'14': I-DRV
'15': B-EVT
'16': I-EVT
'17': B-MISC
'18': I-MISC
splits:
- name: train
num_bytes: 20104393
num_examples: 29870
- name: validation
num_bytes: 2779723
num_examples: 4300
- name: test
num_bytes: 2257594
num_examples: 3450
download_size: 41118494
dataset_size: 25141710
- config_name: bokmaal-7
features:
- name: idx
dtype: string
- name: lang
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': ADV
'14': INTJ
'15': VERB
'16': AUX
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-PROD
'6': I-PROD
'7': B-LOC
'8': I-LOC
'9': B-DRV
'10': I-DRV
'11': B-EVT
'12': I-EVT
'13': B-MISC
'14': I-MISC
splits:
- name: train
num_bytes: 10032169
num_examples: 15696
- name: validation
num_bytes: 1501730
num_examples: 2410
- name: test
num_bytes: 1234272
num_examples: 1939
download_size: 20909241
dataset_size: 12768171
- config_name: nynorsk-7
features:
- name: idx
dtype: string
- name: lang
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': ADV
'14': INTJ
'15': VERB
'16': AUX
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-PROD
'6': I-PROD
'7': B-LOC
'8': I-LOC
'9': B-DRV
'10': I-DRV
'11': B-EVT
'12': I-EVT
'13': B-MISC
'14': I-MISC
splits:
- name: train
num_bytes: 10072260
num_examples: 14174
- name: validation
num_bytes: 1278029
num_examples: 1890
- name: test
num_bytes: 1023358
num_examples: 1511
download_size: 20209253
dataset_size: 12373647
- config_name: combined-7
features:
- name: idx
dtype: string
- name: lang
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': ADV
'14': INTJ
'15': VERB
'16': AUX
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-PROD
'6': I-PROD
'7': B-LOC
'8': I-LOC
'9': B-DRV
'10': I-DRV
'11': B-EVT
'12': I-EVT
'13': B-MISC
'14': I-MISC
splits:
- name: train
num_bytes: 20104393
num_examples: 29870
- name: validation
num_bytes: 2779723
num_examples: 4300
- name: test
num_bytes: 2257594
num_examples: 3450
download_size: 41118494
dataset_size: 25141710
- config_name: bokmaal-8
features:
- name: idx
dtype: string
- name: lang
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': ADV
'14': INTJ
'15': VERB
'16': AUX
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-PROD
'6': I-PROD
'7': B-LOC
'8': I-LOC
'9': B-GPE
'10': I-GPE
'11': B-DRV
'12': I-DRV
'13': B-EVT
'14': I-EVT
'15': B-MISC
'16': I-MISC
splits:
- name: train
num_bytes: 10032169
num_examples: 15696
- name: validation
num_bytes: 1501730
num_examples: 2410
- name: test
num_bytes: 1234272
num_examples: 1939
download_size: 20909241
dataset_size: 12768171
- config_name: nynorsk-8
features:
- name: idx
dtype: string
- name: lang
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': ADV
'14': INTJ
'15': VERB
'16': AUX
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-PROD
'6': I-PROD
'7': B-LOC
'8': I-LOC
'9': B-GPE
'10': I-GPE
'11': B-DRV
'12': I-DRV
'13': B-EVT
'14': I-EVT
'15': B-MISC
'16': I-MISC
splits:
- name: train
num_bytes: 10072260
num_examples: 14174
- name: validation
num_bytes: 1278029
num_examples: 1890
- name: test
num_bytes: 1023358
num_examples: 1511
download_size: 20209253
dataset_size: 12373647
- config_name: combined-8
features:
- name: idx
dtype: string
- name: lang
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: lemmas
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': NOUN
'1': PUNCT
'2': ADP
'3': NUM
'4': SYM
'5': SCONJ
'6': ADJ
'7': PART
'8': DET
'9': CCONJ
'10': PROPN
'11': PRON
'12': X
'13': ADV
'14': INTJ
'15': VERB
'16': AUX
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-PROD
'6': I-PROD
'7': B-LOC
'8': I-LOC
'9': B-GPE
'10': I-GPE
'11': B-DRV
'12': I-DRV
'13': B-EVT
'14': I-EVT
'15': B-MISC
'16': I-MISC
splits:
- name: train
num_bytes: 20104393
num_examples: 29870
- name: validation
num_bytes: 2779723
num_examples: 4300
- name: test
num_bytes: 2257594
num_examples: 3450
download_size: 41118494
dataset_size: 25141710
---
# Dataset Card for NorNE: Norwegian Named Entities
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [NorNE](https://github.com/ltgoslo/norne/)
- **Repository:** [Github](https://github.com/ltgoslo/norne/)
- **Paper:** https://arxiv.org/abs/1911.12146
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
NorNE is a manually annotated corpus of named entities which extends the annotation of the existing Norwegian Dependency Treebank. Comprising both of the official standards of written Norwegian (Bokmål and Nynorsk), the corpus contains around 600,000 tokens and annotates a rich set of entity types including persons,organizations, locations, geo-political entities, products, and events, in addition to a class corresponding to nominals derived from names.
There are 3 main configs in this dataset each with 3 versions of the NER tag set. When accessing the `bokmaal`, `nynorsk`, or `combined` configs the NER tag set will be comprised of 9 tags: `GPE_ORG`, `GPE_LOC`, `ORG`, `LOC`, `PER`, `PROD`, `EVT`, `DRV`, and `MISC`. The two special types `GPE_LOC` and `GPE_ORG` can easily be altered depending on the task, choosing either the more general `GPE` tag or the more specific `LOC`/`ORG` tags, conflating them with the other annotations of the same type. To access these reduced versions of the dataset, you can use the configs `bokmaal-7`, `nynorsk-7`, `combined-7` for the NER tag set with 7 tags ( **`ORG`**, **`LOC`**, `PER`, `PROD`, `EVT`, `DRV`, `MISC`), and `bokmaal-8`, `nynorsk-8`, `combined-8` for the NER tag set with 8 tags (`LOC_` and `ORG_`: **`ORG`**, **`LOC`**, **`GPE`**, `PER`, `PROD`, `EVT`, `DRV`, `MISC`). By default, the full set (9 tags) will be used. See Annotations for further details.
### Supported Tasks and Leaderboards
NorNE ads named entity annotations on top of the Norwegian Dependency Treebank.
### Languages
Both Norwegian Bokmål (`bokmaal`) and Nynorsk (`nynorsk`) are supported as different configs in this dataset. An extra config for the combined languages is also included (`combined`). See the Annotation section for details on accessing reduced tag sets for the NER feature.
## Dataset Structure
Each entry contains text sentences, their language, identifiers, tokens, lemmas, and corresponding NER and POS tag lists.
### Data Instances
An example of the `train` split of the `bokmaal` config.
```python
{'idx': '000001',
'lang': 'bokmaal',
'lemmas': ['lam', 'og', 'piggvar', 'på', 'bryllupsmeny'],
'ner_tags': [0, 0, 0, 0, 0],
'pos_tags': [0, 9, 0, 5, 0],
'text': 'Lam og piggvar på bryllupsmenyen',
'tokens': ['Lam', 'og', 'piggvar', 'på', 'bryllupsmenyen']}
```
### Data Fields
Each entry is annotated with the next fields:
- `idx` (`int`), text (sentence) identifier from the NorNE dataset
- `lang` (`str`), language variety, either `bokmaal`, `nynorsk` or `combined`
- `text` (`str`), plain text
- `tokens` (`List[str]`), list of tokens extracted from `text`
- `lemmas` (`List[str]`), list of lemmas extracted from `tokens`
- `ner_tags` (`List[int]`), list of numeric NER tags for each token in `tokens`
- `pos_tags` (`List[int]`), list of numeric PoS tags for each token in `tokens`
An example DataFrame obtained from the dataset:
<table class="dataframe" border="1">
<thead>
<tr style="text-align: right;">
<th></th>
<th>idx</th>
<th>lang</th>
<th>text</th>
<th>tokens</th>
<th>lemmas</th>
<th>ner_tags</th>
<th>pos_tags</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>000001</td>
<td>bokmaal</td>
<td>Lam og piggvar på bryllupsmenyen</td>
<td>[Lam, og, piggvar, på, bryllupsmenyen]</td>
<td>[lam, og, piggvar, på, bryllupsmeny]</td>
<td>[0, 0, 0, 0, 0]</td>
<td>[0, 9, 0, 5, 0]</td>
</tr>
<tr>
<th>1</th>
<td>000002</td>
<td>bokmaal</td>
<td>Kamskjell, piggvar og lammefilet sto på menyen...</td>
<td>[Kamskjell, ,, piggvar, og, lammefilet, sto, p...</td>
<td>[kamskjell, $,, piggvar, og, lammefilet, stå, ...</td>
<td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]</td>
<td>[0, 1, 0, 9, 0, 15, 2, 0, 2, 8, 6, 0, 1]</td>
</tr>
<tr>
<th>2</th>
<td>000003</td>
<td>bokmaal</td>
<td>Og til dessert: Parfait à la Mette-Marit.</td>
<td>[Og, til, dessert, :, Parfait, à, la, Mette-Ma...</td>
<td>[og, til, dessert, $:, Parfait, à, la, Mette-M...</td>
<td>[0, 0, 0, 0, 7, 8, 8, 8, 0]</td>
<td>[9, 2, 0, 1, 10, 12, 12, 10, 1]</td>
</tr>
</tbody>
</table>
### Data Splits
There are three splits: `train`, `validation` and `test`.
| Config | Split | Total |
| :---------|-------------:|-------:|
| `bokmaal` | `train` | 15696 |
| `bokmaal` | `validation` | 2410 |
| `bokmaal` | `test` | 1939 |
| `nynorsk` | `train` | 14174 |
| `nynorsk` | `validation` | 1890 |
| `nynorsk` | `test` | 1511 |
| `combined`| `test` | 29870 |
| `combined`| `validation` | 4300 |
| `combined`| `test` | 3450 |
## Dataset Creation
### Curation Rationale
1. A _name_ in this context is close to [Saul Kripke's definition of a name](https://en.wikipedia.org/wiki/Saul_Kripke#Naming_and_Necessity),
in that a name has a unique reference and its meaning is constant (there are exceptions in the annotations, e.g. "Regjeringen" (en. "Government")).
2. It is the usage of a name that determines the entity type, not the default/literal sense of the name,
3. If there is an ambiguity in the type/sense of a name, then the the default/literal sense of the name is chosen
(following [Markert and Nissim, 2002](http://www.lrec-conf.org/proceedings/lrec2002/pdf/11.pdf)).
For more details, see the "Annotation Guidelines.pdf" distributed with the corpus.
### Source Data
Data was collected using blogs and newspapers in Norwegian, as well as parliament speeches and governamental reports.
#### Initial Data Collection and Normalization
The texts in the Norwegian Dependency Treebank (NDT) are manually annotated with morphological features, syntactic functions
and hierarchical structure. The formalism used for the syntactic annotation is dependency grammar.
The treebanks consists of two parts, one part in Norwegian Bokmål (`nob`) and one part in Norwegian Nynorsk (`nno`).
Both parts contain around 300.000 tokens, and are a mix of different non-fictional genres.
See the [NDT webpage](https://www.nb.no/sprakbanken/show?serial=sbr-10) for more details.
### Annotations
The following types of entities are annotated:
- **Person (`PER`):** Real or fictional characters and animals
- **Organization (`ORG`):** Any collection of people, such as firms, institutions, organizations, music groups,
sports teams, unions, political parties etc.
- **Location (`LOC`):** Geographical places, buildings and facilities
- **Geo-political entity (`GPE`):** Geographical regions defined by political and/or social groups.
A GPE entity subsumes and does not distinguish between a nation, its region, its government, or its people
- **Product (`PROD`):** Artificially produced entities are regarded products. This may include more abstract entities, such as speeches,
radio shows, programming languages, contracts, laws and ideas.
- **Event (`EVT`):** Festivals, cultural events, sports events, weather phenomena, wars, etc. Events are bounded in time and space.
- **Derived (`DRV`):** Words (and phrases?) that are dervied from a name, but not a name in themselves. They typically contain a full name and are capitalized, but are not proper nouns. Examples (fictive) are "Brann-treneren" ("the Brann coach") or "Oslo-mannen" ("the man from Oslo").
- **Miscellaneous (`MISC`):** Names that do not belong in the other categories. Examples are animals species and names of medical conditions. Entities that are manufactured or produced are of type Products, whereas thing naturally or spontaneously occurring are of type Miscellaneous.
Furthermore, all `GPE` entities are additionally sub-categorized as being either `ORG` or `LOC`, with the two annotation levels separated by an underscore:
- `GPE_LOC`: Geo-political entity, with a locative sense (e.g. "John lives in _Spain_")
- `GPE_ORG`: Geo-political entity, with an organisation sense (e.g. "_Spain_ declined to meet with Belgium")
The two special types `GPE_LOC` and `GPE_ORG` can easily be altered depending on the task, choosing either the more general `GPE` tag or the more specific `LOC`/`ORG` tags, conflating them with the other annotations of the same type. This means that the following sets of entity types can be derived:
- 7 types, deleting `_GPE`: **`ORG`**, **`LOC`**, `PER`, `PROD`, `EVT`, `DRV`, `MISC`
- 8 types, deleting `LOC_` and `ORG_`: **`ORG`**, **`LOC`**, **`GPE`**, `PER`, `PROD`, `EVT`, `DRV`, `MISC`
- 9 types, keeping all types: **`ORG`**, **`LOC`**, **`GPE_LOC`**, **`GPE_ORG`**, `PER`, `PROD`, `EVT`, `DRV`, `MISC`
The class distribution is as follows, broken down across the data splits of the UD version of NDT, and sorted by total counts (i.e. the number of examples, not tokens within the spans of the annotatons):
| Type | Train | Dev | Test | Total |
| :--------|-------:|-------:|-------:|-------:|
| `PER` | 4033 | 607 | 560 | 5200 |
| `ORG` | 2828 | 400 | 283 | 3511 |
| `GPE_LOC`| 2132 | 258 | 257 | 2647 |
| `PROD` | 671 | 162 | 71 | 904 |
| `LOC` | 613 | 109 | 103 | 825 |
| `GPE_ORG`| 388 | 55 | 50 | 493 |
| `DRV` | 519 | 77 | 48 | 644 |
| `EVT` | 131 | 9 | 5 | 145 |
| `MISC` | 8 | 0 | 0 | 0 |
To access these reduced versions of the dataset, you can use the configs `bokmaal-7`, `nynorsk-7`, `combined-7` for the NER tag set with 7 tags ( **`ORG`**, **`LOC`**, `PER`, `PROD`, `EVT`, `DRV`, `MISC`), and `bokmaal-8`, `nynorsk-8`, `combined-8` for the NER tag set with 8 tags (`LOC_` and `ORG_`: **`ORG`**, **`LOC`**, **`GPE`**, `PER`, `PROD`, `EVT`, `DRV`, `MISC`). By default, the full set (9 tags) will be used.
## Additional Information
### Dataset Curators
NorNE was created as a collaboration between [Schibsted Media Group](https://schibsted.com/), [Språkbanken](https://www.nb.no/forskning/sprakbanken/) at the [National Library of Norway](https://www.nb.no) and the [Language Technology Group](https://www.mn.uio.no/ifi/english/research/groups/ltg/) at the University of Oslo.
NorNE was added to 🤗 Datasets by the AI-Lab at the National Library of Norway.
### Licensing Information
The NorNE corpus is published under the same [license](https://github.com/ltgoslo/norne/blob/master/LICENSE_NDT.txt) as the Norwegian Dependency Treebank
### Citation Information
This dataset is described in the paper _NorNE: Annotating Named Entities for Norwegian_ by
Fredrik Jørgensen, Tobias Aasmoe, Anne-Stine Ruud Husevåg, Lilja Øvrelid, and Erik Velldal, accepted for LREC 2020 and available as pre-print here: https://arxiv.org/abs/1911.12146.
```bibtex
@inproceedings{johansen2019ner,
title={NorNE: Annotating Named Entities for Norwegian},
author={Fredrik Jørgensen, Tobias Aasmoe, Anne-Stine Ruud Husevåg,
Lilja Øvrelid, and Erik Velldal},
booktitle={LREC 2020},
year={2020},
url={https://arxiv.org/abs/1911.12146}
}
```
### Contributions
Thanks to [@versae](https://github.com/versae) for adding this dataset. |