lunesco commited on
Commit
f0b8ba9
·
1 Parent(s): 6879ab3

Create conll2003.py

Browse files
Files changed (1) hide show
  1. conll2003.py +184 -0
conll2003.py ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition"""
18
+
19
+ import os
20
+
21
+ import datasets
22
+ from datasets import load_dataset
23
+
24
+ logger = datasets.logging.get_logger(__name__)
25
+
26
+
27
+ _CITATION = """\
28
+ @inproceedings{tjong-kim-sang-de-meulder-2003-introduction,
29
+ title = "Introduction to the {C}o{NLL}-2003 Shared Task: Language-Independent Named Entity Recognition",
30
+ author = "Tjong Kim Sang, Erik F. and
31
+ De Meulder, Fien",
32
+ booktitle = "Proceedings of the Seventh Conference on Natural Language Learning at {HLT}-{NAACL} 2003",
33
+ year = "2003",
34
+ url = "https://www.aclweb.org/anthology/W03-0419",
35
+ pages = "142--147",
36
+ }
37
+ """
38
+
39
+ _DESCRIPTION = """\
40
+ The shared task of CoNLL-2003 concerns language-independent named entity recognition. We will concentrate on
41
+ four types of named entities: persons, locations, organizations and names of miscellaneous entities that do
42
+ not belong to the previous three groups.
43
+
44
+ The CoNLL-2003 shared task data files contain four columns separated by a single space. Each word has been put on
45
+ a separate line and there is an empty line after each sentence. The first item on each line is a word, the second
46
+ a part-of-speech (POS) tag, the third a syntactic chunk tag and the fourth the named entity tag. The chunk tags
47
+ and the named entity tags have the format I-TYPE which means that the word is inside a phrase of type TYPE. Only
48
+ if two phrases of the same type immediately follow each other, the first word of the second phrase will have tag
49
+ B-TYPE to show that it starts a new phrase. A word with tag O is not part of a phrase. Note the dataset uses IOB2
50
+ tagging scheme, whereas the original dataset uses IOB1.
51
+
52
+ For more details see https://www.clips.uantwerpen.be/conll2003/ner/ and https://www.aclweb.org/anthology/W03-0419
53
+ """
54
+
55
+ _URL = "http://github.com/lunesco/conll2003/raw/e3006b5e2c5c68c1c7ccc0f2583c7cab33a31c15/conll2003.zip"
56
+ _TRAINING_FILE = "train.txt"
57
+ _DEV_FILE = "valid.txt"
58
+ _TEST_FILE = "test.txt"
59
+
60
+
61
+ class Conll2003Config(datasets.BuilderConfig):
62
+ """BuilderConfig for Conll2003"""
63
+
64
+ def __init__(self, **kwargs):
65
+ """BuilderConfig forConll2003.
66
+
67
+ Args:
68
+ **kwargs: keyword arguments forwarded to super.
69
+ """
70
+ super(Conll2003Config, self).__init__(**kwargs)
71
+
72
+
73
+ class Conll2003(datasets.GeneratorBasedBuilder):
74
+ """Conll2003 dataset."""
75
+
76
+ BUILDER_CONFIGS = [
77
+ Conll2003Config(name="conll2003", version=datasets.Version("1.0.0"), description="Conll2003 dataset"),
78
+ ]
79
+
80
+ def _info(self): # 49, 23, 42 dlugosc (vs 47, 23, 9)
81
+ return datasets.DatasetInfo(
82
+ description=_DESCRIPTION,
83
+ features=datasets.Features(
84
+ {
85
+ "id": datasets.Value("string"),
86
+ "tokens": datasets.Sequence(datasets.Value("string")),
87
+ "pos_tags": datasets.Sequence(
88
+ datasets.features.ClassLabel(
89
+ names=['VAFIN', 'PPOSAT', 'NN', 'APPR', 'ADV', 'VVINF', '$.', 'NE',
90
+ 'CARD', 'TRUNC', 'XY', 'ADJA', 'ART', 'VVFIN', 'PPER', 'APPRART',
91
+ '$[', 'VVPP', 'KON', '$,', 'PTKVZ', 'ADJD', 'PIAT', 'PRELS',
92
+ 'PTKNEG', 'VAINF', 'VMFIN', 'PTKZU', 'PROAV', 'PIDAT', 'PDS',
93
+ 'PWAV', 'PWS', 'KOUS', 'PIS', 'PRF', 'FM', 'ITJ', 'PTKANT', 'PDAT',
94
+ 'VVIZU', 'PWAT', 'APZR', 'KOKOM', 'VVIMP', 'PTKA', 'KOUI', 'APPO',
95
+ 'VAPP']
96
+ )
97
+ ),
98
+ "chunk_tags": datasets.Sequence(
99
+ datasets.features.ClassLabel(
100
+ names=['I-VA', 'I-PP', 'I-NN', 'I-AP', 'I-AD', 'I-VV', 'I-$.', 'I-NE',
101
+ 'I-CA', 'I-TR', 'I-XY', 'I-AR', 'I-$[', 'I-KO', 'I-$,',
102
+ 'I-PT', 'I-PI', 'I-PR', 'I-VM', 'I-PD', 'I-PW', 'I-FM', 'I-IT']
103
+ )
104
+ ),
105
+ "ner_tags": datasets.Sequence(
106
+ datasets.features.ClassLabel(
107
+ names=['O', 'B-organization-company', 'B-location-route',
108
+ 'B-trigger', 'B-location-stop', 'B-date', 'B-location-city',
109
+ 'B-event-cause', 'I-event-cause', 'B-time', 'I-time', 'B-number',
110
+ 'B-organization', 'I-organization', 'B-location-street',
111
+ 'I-trigger', 'B-location', 'I-location', 'I-location-city',
112
+ 'I-organization-company', 'B-duration', 'I-duration',
113
+ 'I-location-street', 'I-location-stop', 'I-location-route',
114
+ 'B-person', 'I-date', 'B-set', 'B-money', 'I-person', 'I-money',
115
+ 'B-distance', 'I-distance', 'I-number', 'B-disaster-type',
116
+ 'B-org-position', 'I-org-position', 'I-set', 'B-percent',
117
+ 'I-percent', 'I-disaster-type']
118
+ )
119
+ ),
120
+ }
121
+ ),
122
+ supervised_keys=None,
123
+ homepage="https://www.aclweb.org/anthology/W03-0419/",
124
+ citation=_CITATION,
125
+ )
126
+
127
+ def _split_generators(self, dl_manager):
128
+ """Returns SplitGenerators."""
129
+ downloaded_file = dl_manager.download_and_extract(_URL)
130
+ data_files = {
131
+ "train": os.path.join(downloaded_file, _TRAINING_FILE),
132
+ "dev": os.path.join(downloaded_file, _DEV_FILE),
133
+ "test": os.path.join(downloaded_file, _TEST_FILE),
134
+ }
135
+
136
+ return [
137
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}),
138
+ datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["dev"]}),
139
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}),
140
+ ]
141
+
142
+ def _generate_examples(self, filepath):
143
+ logger.info("⏳ Generating examples from = %s", filepath)
144
+ with open(filepath, encoding="utf-8") as f:
145
+ guid = 0
146
+ tokens = []
147
+ pos_tags = []
148
+ chunk_tags = []
149
+ ner_tags = []
150
+ for line in f:
151
+ if line.startswith("-DOCSTART-") or line == "" or line == "\n":
152
+ if tokens:
153
+ yield guid, {
154
+ "id": str(guid),
155
+ "tokens": tokens,
156
+ "pos_tags": pos_tags,
157
+ "chunk_tags": chunk_tags,
158
+ "ner_tags": ner_tags,
159
+ }
160
+ guid += 1
161
+ tokens = []
162
+ pos_tags = []
163
+ chunk_tags = []
164
+ ner_tags = []
165
+ else:
166
+ # conll2003 tokens are space separated
167
+ splits = line.split(" ")
168
+ tokens.append(splits[0])
169
+ pos_tags.append(splits[1])
170
+ chunk_tags.append(splits[2])
171
+ ner_tags.append(splits[3].rstrip())
172
+ # last example
173
+ if tokens:
174
+ yield guid, {
175
+ "id": str(guid),
176
+ "tokens": tokens,
177
+ "pos_tags": pos_tags,
178
+ "chunk_tags": chunk_tags,
179
+ "ner_tags": ner_tags,
180
+ }
181
+
182
+
183
+ if __name__ == '__main__':
184
+ datasets = load_dataset('conll2003')