File size: 8,244 Bytes
a5937e9
d12b04f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bf028f
d12b04f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5937e9
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import glob
import json
import os
import zipfile
from typing import List

import datasets
import pandas as pd
from datasets import ClassLabel, Value

_URLS = {
    "go_emotions": {
        "urls": [
            "https://storage.googleapis.com/gresearch/goemotions/data/full_dataset/goemotions_1.csv",
            "https://storage.googleapis.com/gresearch/goemotions/data/full_dataset/goemotions_2.csv",
            "https://storage.googleapis.com/gresearch/goemotions/data/full_dataset/goemotions_3.csv",
        ],
        "license": "apache license 2.0"
    },
    "daily_dialog": {
        "urls": ["http://yanran.li/files/ijcnlp_dailydialog.zip"],
        "license": "CC BY-NC-SA 4.0"
    },
    "emotion": {
        "data": ["data/data.jsonl.gz"],
        "license": "educational/research"
    }
}

_CLASS_NAMES = [
    "no emotion",
    "happiness",
    "admiration",
    "amusement",
    "anger",
    "annoyance",
    "approval",
    "caring",
    "confusion",
    "curiosity",
    "desire",
    "disappointment",
    "disapproval",
    "disgust",
    "embarrassment",
    "excitement",
    "fear",
    "gratitude",
    "grief",
    "joy",
    "love",
    "nervousness",
    "optimism",
    "pride",
    "realization",
    "relief",
    "remorse",
    "sadness",
    "surprise",
    "neutral",
]


class EmotionsDatasetConfig(datasets.BuilderConfig):

    def __init__(self, features, label_classes, **kwargs):
        super().__init__(**kwargs)
        self.features = features
        self.label_classes = label_classes


class EmotionsDataset(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        EmotionsDatasetConfig(
            name="all",
            label_classes=_CLASS_NAMES,
            features=["text", "label", "dataset", "license"]
        ),
        EmotionsDatasetConfig(
            name="multilingual",
            label_classes=_CLASS_NAMES,
            features=["text", "label", "dataset", "license", "es", "it", "fr", "de"]
        )
    ]

    DEFAULT_CONFIG_NAME = "all"

    def _info(self):
        if self.config.name == "all":
            return datasets.DatasetInfo(
                features=datasets.Features(
                    {
                        "id": datasets.Value("string"),
                        'text': Value(dtype='string', id=None),
                        'label': ClassLabel(names=_CLASS_NAMES, id=None),
                        'dataset': Value(dtype='string', id=None),
                        'license': Value(dtype='string', id=None)
                    }
                )
            )
        else:
            return datasets.DatasetInfo(
                features=datasets.Features(
                    {
                        "id": datasets.Value("string"),
                        'text': Value(dtype='string', id=None),
                        'label': ClassLabel(names=_CLASS_NAMES, id=None),
                        'dataset': Value(dtype='string', id=None),
                        'license': Value(dtype='string', id=None),
                        'es': Value(dtype='string', id=None),
                        'it': Value(dtype='string', id=None),
                        'fr': Value(dtype='string', id=None),
                        'de': Value(dtype='string', id=None),
                    }
                )
            )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        splits = []
        if self.config.name == "all":
            for k, v in _URLS.items():
                downloaded_files = dl_manager.download_and_extract(v.get("urls", v.get("data")))
                splits.append(datasets.SplitGenerator(name=k,
                                                      gen_kwargs={"filepaths": downloaded_files,
                                                                  "dataset": k,
                                                                  "license": v.get("license")}))
        else:
            k = self.config.name
            v = _URLS.get(k)
            downloaded_files = dl_manager.download_and_extract(["data/many_emotions.tar.xz"])
            splits.append(datasets.SplitGenerator(name=k,
                                                  gen_kwargs={"filepaths": downloaded_files,
                                                              "dataset": "many_emotions"}))
        return splits

    def process_daily_dialog(self, filepaths, dataset):
        # TODO move outside
        emo_mapping = {0: "no emotion", 1: "anger", 2: "disgust",
                       3: "fear", 4: "happiness", 5: "sadness", 6: "surprise"}
        for i, filepath in enumerate(filepaths):
            if os.path.isdir(filepath):
                emotions = open(os.path.join(filepath, "ijcnlp_dailydialog/dialogues_emotion.txt"), "r").read()
                text = open(os.path.join(filepath, "ijcnlp_dailydialog/dialogues_text.txt"), "r").read()
            else:
                # TODO check if this can be removed
                archive = zipfile.ZipFile(filepath, 'r')
                emotions = archive.open("ijcnlp_dailydialog/dialogues_emotion.txt", "r").read().decode()
                text = archive.open("ijcnlp_dailydialog/dialogues_text.txt", "r").read().decode()
            emotions = emotions.split("\n")
            text = text.split("\n")

            for idx_out, (e, t) in enumerate(zip(emotions, text)):
                if len(t.strip()) > 0:
                    cast_emotions = [int(j) for j in e.strip().split(" ")]
                    cast_dialog = [d.strip() for d in t.split("__eou__") if len(d)]
                    for idx_in, (ce, ct) in enumerate(zip(cast_emotions, cast_dialog)):
                        uid = f"daily_dialog_{i}_{idx_out}_{idx_in}"
                        yield uid, {"text": ct,
                                    "id": uid,
                                    "dataset": dataset,
                                    "license": license,
                                    "label": emo_mapping[ce]}

    def _generate_examples(self, filepaths, dataset, license=None):
        if dataset == "go_emotions":
            for i, filepath in enumerate(filepaths):
                df = pd.read_csv(filepath)
                current_classes = list(set(df.columns).intersection(set(_CLASS_NAMES)))
                df = df[["text"] + current_classes]
                df = df[df[current_classes].sum(axis=1) == 1].reset_index(drop=True)
                for row_idx, row in df.iterrows():
                    uid = f"go_emotions_{i}_{row_idx}"
                    yield uid, {"text": row["text"],
                                "id": uid,
                                "dataset": dataset,
                                "license": license,
                                "label": row[current_classes][row == 1].index.item()}
        elif dataset == "daily_dialog":
            for d in self.process_daily_dialog(filepaths, dataset):
                yield d
        elif dataset == "emotion":
            emo_mapping = {0: "sadness", 1: "joy", 2: "love",
                           3: "anger", 4: "fear", 5: "surprise"}
            for i, filepath in enumerate(filepaths):
                with open(filepath, encoding="utf-8") as f:
                    for idx, line in enumerate(f):
                        uid = f"{dataset}_{idx}"
                        example = json.loads(line)
                        example.update({
                            "id": uid,
                            "dataset": dataset,
                            "license": license,
                            "label": emo_mapping[example["label"]]
                        })
                        yield uid, example
        elif dataset == "many_emotions":
            for _, folder in enumerate(filepaths):
                for i, filepath in glob.glob(f"{folder}/*"):
                    with open(filepath, encoding="utf-8") as f:
                        for idx, line in enumerate(f):
                            example = json.loads(line)
                            example.update({
                                "label": _CLASS_NAMES[example["label"]]
                            })
                            yield example["id"], example