|
import glob |
|
import json |
|
import os |
|
import zipfile |
|
from typing import List |
|
|
|
import datasets |
|
import pandas as pd |
|
from datasets import ClassLabel, Value, load_dataset |
|
|
|
_URLS = { |
|
"go_emotions": { |
|
"urls": [ |
|
"https://storage.googleapis.com/gresearch/goemotions/data/full_dataset/goemotions_1.csv", |
|
"https://storage.googleapis.com/gresearch/goemotions/data/full_dataset/goemotions_2.csv", |
|
"https://storage.googleapis.com/gresearch/goemotions/data/full_dataset/goemotions_3.csv", |
|
], |
|
"license": "apache license 2.0" |
|
}, |
|
"daily_dialog": { |
|
"urls": ["http://yanran.li/files/ijcnlp_dailydialog.zip"], |
|
"license": "CC BY-NC-SA 4.0" |
|
}, |
|
"emotion": { |
|
"data": ["data/data.jsonl.gz"], |
|
"license": "educational/research" |
|
} |
|
} |
|
|
|
_CLASS_NAMES = [ |
|
"no emotion", |
|
"happiness", |
|
"admiration", |
|
"amusement", |
|
"anger", |
|
"annoyance", |
|
"approval", |
|
"caring", |
|
"confusion", |
|
"curiosity", |
|
"desire", |
|
"disappointment", |
|
"disapproval", |
|
"disgust", |
|
"embarrassment", |
|
"excitement", |
|
"fear", |
|
"gratitude", |
|
"grief", |
|
"joy", |
|
"love", |
|
"nervousness", |
|
"optimism", |
|
"pride", |
|
"realization", |
|
"relief", |
|
"remorse", |
|
"sadness", |
|
"surprise", |
|
"neutral", |
|
] |
|
|
|
|
|
class EmotionsDatasetConfig(datasets.BuilderConfig): |
|
|
|
def __init__(self, features, label_classes, **kwargs): |
|
super().__init__(**kwargs) |
|
self.features = features |
|
self.label_classes = label_classes |
|
|
|
|
|
class EmotionsDataset(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
EmotionsDatasetConfig( |
|
name="all", |
|
label_classes=_CLASS_NAMES, |
|
features=["text", "label", "dataset", "license"] |
|
), |
|
EmotionsDatasetConfig( |
|
name="multilingual", |
|
label_classes=_CLASS_NAMES, |
|
features=["text", "label", "dataset", "license"] |
|
) |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "all" |
|
|
|
def _info(self): |
|
if self.config.name == "all": |
|
return datasets.DatasetInfo( |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
'text': Value(dtype='string', id=None), |
|
'label': ClassLabel(names=_CLASS_NAMES, id=None), |
|
'dataset': Value(dtype='string', id=None), |
|
'license': Value(dtype='string', id=None) |
|
} |
|
) |
|
) |
|
else: |
|
return datasets.DatasetInfo( |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
'text': Value(dtype='string', id=None), |
|
'label': ClassLabel(names=_CLASS_NAMES, id=None), |
|
'dataset': Value(dtype='string', id=None), |
|
'license': Value(dtype='string', id=None) |
|
} |
|
) |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
splits = [] |
|
if self.config.name == "all": |
|
for k, v in _URLS.items(): |
|
downloaded_files = dl_manager.download_and_extract(v.get("urls", v.get("data"))) |
|
splits.append(datasets.SplitGenerator(name=k, |
|
gen_kwargs={"filepaths": downloaded_files, |
|
"dataset": k, |
|
"license": v.get("license")})) |
|
else: |
|
downloaded_files = dl_manager.download_and_extract(["data/many_emotions.tar.xz"]) |
|
for lang in ["en", "fr", "it", "es", "de"]: |
|
splits.append(datasets.SplitGenerator(name=lang, |
|
gen_kwargs={"filepaths": downloaded_files, |
|
"language": lang, |
|
"dataset": "many_emotions"})) |
|
return splits |
|
|
|
def process_daily_dialog(self, filepaths, dataset): |
|
|
|
emo_mapping = {0: "no emotion", 1: "anger", 2: "disgust", |
|
3: "fear", 4: "happiness", 5: "sadness", 6: "surprise"} |
|
for i, filepath in enumerate(filepaths): |
|
if os.path.isdir(filepath): |
|
emotions = open(os.path.join(filepath, "ijcnlp_dailydialog/dialogues_emotion.txt"), "r").read() |
|
text = open(os.path.join(filepath, "ijcnlp_dailydialog/dialogues_text.txt"), "r").read() |
|
else: |
|
|
|
archive = zipfile.ZipFile(filepath, 'r') |
|
emotions = archive.open("ijcnlp_dailydialog/dialogues_emotion.txt", "r").read().decode() |
|
text = archive.open("ijcnlp_dailydialog/dialogues_text.txt", "r").read().decode() |
|
emotions = emotions.split("\n") |
|
text = text.split("\n") |
|
|
|
for idx_out, (e, t) in enumerate(zip(emotions, text)): |
|
if len(t.strip()) > 0: |
|
cast_emotions = [int(j) for j in e.strip().split(" ")] |
|
cast_dialog = [d.strip() for d in t.split("__eou__") if len(d)] |
|
for idx_in, (ce, ct) in enumerate(zip(cast_emotions, cast_dialog)): |
|
uid = f"daily_dialog_{i}_{idx_out}_{idx_in}" |
|
yield uid, {"text": ct, |
|
"id": uid, |
|
"dataset": dataset, |
|
"license": license, |
|
"label": emo_mapping[ce]} |
|
|
|
def _generate_examples(self, filepaths, dataset, license=None, language=None): |
|
if dataset == "go_emotions": |
|
for i, filepath in enumerate(filepaths): |
|
df = pd.read_csv(filepath) |
|
current_classes = list(set(df.columns).intersection(set(_CLASS_NAMES))) |
|
df = df[["text"] + current_classes] |
|
df = df[df[current_classes].sum(axis=1) == 1].reset_index(drop=True) |
|
for row_idx, row in df.iterrows(): |
|
uid = f"go_emotions_{i}_{row_idx}" |
|
yield uid, {"text": row["text"], |
|
"id": uid, |
|
"dataset": dataset, |
|
"license": license, |
|
"label": row[current_classes][row == 1].index.item()} |
|
elif dataset == "daily_dialog": |
|
for d in self.process_daily_dialog(filepaths, dataset): |
|
yield d |
|
elif dataset == "emotion": |
|
emo_mapping = {0: "sadness", 1: "joy", 2: "love", |
|
3: "anger", 4: "fear", 5: "surprise"} |
|
for i, filepath in enumerate(filepaths): |
|
with open(filepath, encoding="utf-8") as f: |
|
for idx, line in enumerate(f): |
|
uid = f"{dataset}_{idx}" |
|
example = json.loads(line) |
|
example.update({ |
|
"id": uid, |
|
"dataset": dataset, |
|
"license": license, |
|
"label": emo_mapping[example["label"]] |
|
}) |
|
yield uid, example |
|
elif dataset == "many_emotions": |
|
for _, folder in enumerate(filepaths): |
|
for filepath in glob.glob(f"{folder}/*"): |
|
with open(filepath, encoding="utf-8") as f: |
|
for idx, line in enumerate(f): |
|
example = json.loads(line) |
|
if language != "all": |
|
example = { |
|
"id": example["id"], |
|
'text': example["text" if language == "en" else language], |
|
'label': example["label"], |
|
'dataset': example["dataset"], |
|
'license': example["license"] |
|
} |
|
example.update({ |
|
"label": _CLASS_NAMES[example["label"]] |
|
}) |
|
yield example["id"], example |
|
|
|
|
|
if __name__ == "__main__": |
|
dataset = load_dataset("ma2za/many_emotions", name="all", split="emotion") |
|
print() |
|
|