ma2za commited on
Commit
07612c4
·
1 Parent(s): fd4679e

🐉 usable dataset

Browse files
Files changed (3) hide show
  1. data/data.jsonl.gz +0 -3
  2. many_emotions.py +32 -117
  3. requirements.txt +1 -2
data/data.jsonl.gz DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:8944e6b35cb42294769ac30cf17bd006231545b2eeecfa59324246e192564d1f
3
- size 15388281
 
 
 
 
many_emotions.py CHANGED
@@ -1,29 +1,10 @@
1
  import json
2
- import os
3
- import zipfile
4
  from typing import List
5
 
6
  import datasets
7
- import pandas as pd
8
  from datasets import ClassLabel, Value, load_dataset
9
 
10
  _URLS = {
11
- "go_emotions": {
12
- "urls": [
13
- "https://storage.googleapis.com/gresearch/goemotions/data/full_dataset/goemotions_1.csv",
14
- "https://storage.googleapis.com/gresearch/goemotions/data/full_dataset/goemotions_2.csv",
15
- "https://storage.googleapis.com/gresearch/goemotions/data/full_dataset/goemotions_3.csv",
16
- ],
17
- "license": "apache license 2.0"
18
- },
19
- "daily_dialog": {
20
- "urls": ["http://yanran.li/files/ijcnlp_dailydialog.zip"],
21
- "license": "CC BY-NC-SA 4.0"
22
- },
23
- "emotion": {
24
- "data": ["data/data.jsonl.gz"],
25
- "license": "educational/research"
26
- }
27
  }
28
 
29
  _SUB_CLASSES = [
@@ -81,124 +62,52 @@ class EmotionsDatasetConfig(datasets.BuilderConfig):
81
  class EmotionsDataset(datasets.GeneratorBasedBuilder):
82
  BUILDER_CONFIGS = [
83
  EmotionsDatasetConfig(
84
- name="all",
85
- label_classes=_CLASS_NAMES,
86
- features=["text", "label", "dataset", "license"]
87
  ),
88
  EmotionsDatasetConfig(
89
- name="multilingual",
90
  label_classes=_SUB_CLASSES,
91
- features=["text", "label", "dataset", "license"]
92
  )
93
  ]
94
 
95
  DEFAULT_CONFIG_NAME = "all"
96
 
97
  def _info(self):
98
- if self.config.name == "all":
99
- return datasets.DatasetInfo(
100
- features=datasets.Features(
101
- {
102
- "id": datasets.Value("string"),
103
- 'text': Value(dtype='string', id=None),
104
- 'label': ClassLabel(names=_CLASS_NAMES, id=None),
105
- 'dataset': Value(dtype='string', id=None),
106
- 'license': Value(dtype='string', id=None)
107
- }
108
- )
109
- )
110
- else:
111
- return datasets.DatasetInfo(
112
- features=datasets.Features(
113
- {
114
- "id": datasets.Value("string"),
115
- 'text': Value(dtype='string', id=None),
116
- 'label': ClassLabel(names=_SUB_CLASSES, id=None),
117
- 'dataset': Value(dtype='string', id=None),
118
- 'license': Value(dtype='string', id=None)
119
- }
120
- )
121
  )
 
122
 
123
  def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
124
  splits = []
125
- if self.config.name == "all":
126
- for k, v in _URLS.items():
127
- downloaded_files = dl_manager.download_and_extract(v.get("urls", v.get("data")))
128
- splits.append(datasets.SplitGenerator(name=k,
129
- gen_kwargs={"filepaths": downloaded_files,
130
- "dataset": k,
131
- "license": v.get("license")}))
132
- else:
133
  downloaded_files = dl_manager.download_and_extract(["data/many_emotions.json.gz"])
134
  for lang in ["en", "fr", "it", "es", "de"]:
135
  splits.append(datasets.SplitGenerator(name=lang,
136
  gen_kwargs={"filepaths": downloaded_files,
137
  "language": lang,
138
- "dataset": "many_emotions"}))
 
 
 
 
 
 
139
  return splits
140
 
141
- def process_daily_dialog(self, filepaths, dataset):
142
- # TODO move outside
143
- emo_mapping = {0: "no emotion", 1: "anger", 2: "disgust",
144
- 3: "fear", 4: "happiness", 5: "sadness", 6: "surprise"}
145
- for i, filepath in enumerate(filepaths):
146
- if os.path.isdir(filepath):
147
- emotions = open(os.path.join(filepath, "ijcnlp_dailydialog/dialogues_emotion.txt"), "r").read()
148
- text = open(os.path.join(filepath, "ijcnlp_dailydialog/dialogues_text.txt"), "r").read()
149
- else:
150
- # TODO check if this can be removed
151
- archive = zipfile.ZipFile(filepath, 'r')
152
- emotions = archive.open("ijcnlp_dailydialog/dialogues_emotion.txt", "r").read().decode()
153
- text = archive.open("ijcnlp_dailydialog/dialogues_text.txt", "r").read().decode()
154
- emotions = emotions.split("\n")
155
- text = text.split("\n")
156
-
157
- for idx_out, (e, t) in enumerate(zip(emotions, text)):
158
- if len(t.strip()) > 0:
159
- cast_emotions = [int(j) for j in e.strip().split(" ")]
160
- cast_dialog = [d.strip() for d in t.split("__eou__") if len(d)]
161
- for idx_in, (ce, ct) in enumerate(zip(cast_emotions, cast_dialog)):
162
- uid = f"daily_dialog_{i}_{idx_out}_{idx_in}"
163
- yield uid, {"text": ct,
164
- "id": uid,
165
- "dataset": dataset,
166
- "license": license,
167
- "label": emo_mapping[ce]}
168
-
169
  def _generate_examples(self, filepaths, dataset, license=None, language=None):
170
- if dataset == "go_emotions":
171
- for i, filepath in enumerate(filepaths):
172
- df = pd.read_csv(filepath)
173
- current_classes = list(set(df.columns).intersection(set(_CLASS_NAMES)))
174
- df = df[["text"] + current_classes]
175
- df = df[df[current_classes].sum(axis=1) == 1].reset_index(drop=True)
176
- for row_idx, row in df.iterrows():
177
- uid = f"go_emotions_{i}_{row_idx}"
178
- yield uid, {"text": row["text"],
179
- "id": uid,
180
- "dataset": dataset,
181
- "license": license,
182
- "label": row[current_classes][row == 1].index.item()}
183
- elif dataset == "daily_dialog":
184
- for d in self.process_daily_dialog(filepaths, dataset):
185
- yield d
186
- elif dataset == "emotion":
187
- emo_mapping = {0: "sadness", 1: "joy", 2: "love",
188
- 3: "anger", 4: "fear", 5: "surprise"}
189
- for i, filepath in enumerate(filepaths):
190
- with open(filepath, encoding="utf-8") as f:
191
- for idx, line in enumerate(f):
192
- uid = f"{dataset}_{idx}"
193
- example = json.loads(line)
194
- example.update({
195
- "id": uid,
196
- "dataset": dataset,
197
- "license": license,
198
- "label": emo_mapping[example["label"]]
199
- })
200
- yield uid, example
201
- elif dataset == "many_emotions":
202
  for i, filepath in enumerate(filepaths):
203
  with open(filepath, encoding="utf-8") as f:
204
  for idx, line in enumerate(f):
@@ -220,8 +129,14 @@ class EmotionsDataset(datasets.GeneratorBasedBuilder):
220
  "label": label
221
  })
222
  yield example["id"], example
 
 
 
 
 
 
223
 
224
 
225
  if __name__ == "__main__":
226
- dataset = load_dataset("ma2za/many_emotions", name="all", split="emotion")
227
  print()
 
1
  import json
 
 
2
  from typing import List
3
 
4
  import datasets
 
5
  from datasets import ClassLabel, Value, load_dataset
6
 
7
  _URLS = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  }
9
 
10
  _SUB_CLASSES = [
 
62
  class EmotionsDataset(datasets.GeneratorBasedBuilder):
63
  BUILDER_CONFIGS = [
64
  EmotionsDatasetConfig(
65
+ name="raw",
66
+ label_classes=_SUB_CLASSES,
67
+ features=["text", "label", "dataset", "license", "language"]
68
  ),
69
  EmotionsDatasetConfig(
70
+ name="split",
71
  label_classes=_SUB_CLASSES,
72
+ features=["text", "label", "dataset", "license", "language"]
73
  )
74
  ]
75
 
76
  DEFAULT_CONFIG_NAME = "all"
77
 
78
  def _info(self):
79
+ return datasets.DatasetInfo(
80
+ features=datasets.Features(
81
+ {
82
+ "id": datasets.Value("string"),
83
+ 'text': Value(dtype='string', id=None),
84
+ 'label': ClassLabel(names=_SUB_CLASSES, id=None),
85
+ 'dataset': Value(dtype='string', id=None),
86
+ 'license': Value(dtype='string', id=None),
87
+ 'language': Value(dtype='string', id=None)
88
+ }
 
 
 
 
 
 
 
 
 
 
 
 
 
89
  )
90
+ )
91
 
92
  def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
93
  splits = []
94
+ if self.config.name == "raw":
 
 
 
 
 
 
 
95
  downloaded_files = dl_manager.download_and_extract(["data/many_emotions.json.gz"])
96
  for lang in ["en", "fr", "it", "es", "de"]:
97
  splits.append(datasets.SplitGenerator(name=lang,
98
  gen_kwargs={"filepaths": downloaded_files,
99
  "language": lang,
100
+ "dataset": "raw"}))
101
+ else:
102
+ for split in ["train", "validation", "test"]:
103
+ downloaded_files = dl_manager.download_and_extract([f"data/split_dataset_{split}.jsonl.gz"])
104
+ splits.append(datasets.SplitGenerator(name=split,
105
+ gen_kwargs={"filepaths": downloaded_files,
106
+ "dataset": "split"}))
107
  return splits
108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
  def _generate_examples(self, filepaths, dataset, license=None, language=None):
110
+ if dataset == "raw":
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111
  for i, filepath in enumerate(filepaths):
112
  with open(filepath, encoding="utf-8") as f:
113
  for idx, line in enumerate(f):
 
129
  "label": label
130
  })
131
  yield example["id"], example
132
+ else:
133
+ for i, filepath in enumerate(filepaths):
134
+ with open(filepath, encoding="utf-8") as f:
135
+ for idx, line in enumerate(f):
136
+ example = json.loads(line)
137
+ yield example["id"], example
138
 
139
 
140
  if __name__ == "__main__":
141
+ dataset = load_dataset("ma2za/many_emotions", name="raw")
142
  print()
requirements.txt CHANGED
@@ -1,2 +1 @@
1
- datasets
2
- pandas
 
1
+ datasets