Upload emotions_dataset.py
Browse files- emotions_dataset.py +22 -10
emotions_dataset.py
CHANGED
@@ -4,10 +4,14 @@ import datasets
|
|
4 |
import pandas as pd
|
5 |
from datasets import ClassLabel, Value
|
6 |
|
7 |
-
|
8 |
-
"
|
9 |
-
"
|
10 |
-
|
|
|
|
|
|
|
|
|
11 |
]
|
12 |
|
13 |
_CLASS_NAMES = [
|
@@ -57,7 +61,7 @@ class EmotionsDataset(datasets.GeneratorBasedBuilder):
|
|
57 |
EmotionsDatasetConfig(
|
58 |
name="all",
|
59 |
label_classes=_CLASS_NAMES,
|
60 |
-
features=["text", "label", "dataset"]
|
61 |
)
|
62 |
]
|
63 |
|
@@ -68,18 +72,24 @@ class EmotionsDataset(datasets.GeneratorBasedBuilder):
|
|
68 |
features=datasets.Features(
|
69 |
{
|
70 |
"id": datasets.Value("string"),
|
71 |
-
'label': ClassLabel(names=_CLASS_NAMES, id=None),
|
72 |
'text': Value(dtype='string', id=None),
|
73 |
-
'
|
|
|
|
|
74 |
}
|
75 |
)
|
76 |
)
|
77 |
|
78 |
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
def _generate_examples(self, filepaths):
|
83 |
for i, filepath in enumerate(filepaths):
|
84 |
df = pd.read_csv(filepath)
|
85 |
current_classes = list(set(df.columns).intersection(set(_CLASS_NAMES)))
|
@@ -89,4 +99,6 @@ class EmotionsDataset(datasets.GeneratorBasedBuilder):
|
|
89 |
uid = f"{i}_{row_idx}"
|
90 |
yield uid, {"text": row["text"],
|
91 |
"id": uid,
|
|
|
|
|
92 |
"label": row[current_classes][row == 1].index.item()}
|
|
|
4 |
import pandas as pd
|
5 |
from datasets import ClassLabel, Value
|
6 |
|
7 |
+
DATASETS_URLS = [{
|
8 |
+
"name": "go_emotions",
|
9 |
+
"urls": [
|
10 |
+
"https://storage.googleapis.com/gresearch/goemotions/data/full_dataset/goemotions_1.csv",
|
11 |
+
"https://storage.googleapis.com/gresearch/goemotions/data/full_dataset/goemotions_2.csv",
|
12 |
+
"https://storage.googleapis.com/gresearch/goemotions/data/full_dataset/goemotions_3.csv",
|
13 |
+
],
|
14 |
+
"license": "apache license 2.0"}
|
15 |
]
|
16 |
|
17 |
_CLASS_NAMES = [
|
|
|
61 |
EmotionsDatasetConfig(
|
62 |
name="all",
|
63 |
label_classes=_CLASS_NAMES,
|
64 |
+
features=["text", "label", "dataset", "license"]
|
65 |
)
|
66 |
]
|
67 |
|
|
|
72 |
features=datasets.Features(
|
73 |
{
|
74 |
"id": datasets.Value("string"),
|
|
|
75 |
'text': Value(dtype='string', id=None),
|
76 |
+
'label': ClassLabel(names=_CLASS_NAMES, id=None),
|
77 |
+
'dataset': Value(dtype='string', id=None),
|
78 |
+
'license': Value(dtype='string', id=None)
|
79 |
}
|
80 |
)
|
81 |
)
|
82 |
|
83 |
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
84 |
+
splits = []
|
85 |
+
for d in DATASETS_URLS:
|
86 |
+
downloaded_files = dl_manager.download_and_extract(d.get("urls"))
|
87 |
+
splits.append(datasets.SplitGenerator(name=d.get("name"), gen_kwargs={"filepaths": downloaded_files,
|
88 |
+
"dataset": d.get("name"),
|
89 |
+
"license": d.get("license")}))
|
90 |
+
return splits
|
91 |
|
92 |
+
def _generate_examples(self, filepaths, dataset, license):
|
93 |
for i, filepath in enumerate(filepaths):
|
94 |
df = pd.read_csv(filepath)
|
95 |
current_classes = list(set(df.columns).intersection(set(_CLASS_NAMES)))
|
|
|
99 |
uid = f"{i}_{row_idx}"
|
100 |
yield uid, {"text": row["text"],
|
101 |
"id": uid,
|
102 |
+
"dataset": dataset,
|
103 |
+
"license": license,
|
104 |
"label": row[current_classes][row == 1].index.item()}
|