ma2za commited on
Commit
f04268a
·
1 Parent(s): 11bd71b

Upload 2 files

Browse files
Files changed (2) hide show
  1. data/data.jsonl.gz +3 -0
  2. emotions_dataset.py +48 -32
data/data.jsonl.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8944e6b35cb42294769ac30cf17bd006231545b2eeecfa59324246e192564d1f
3
+ size 15388281
emotions_dataset.py CHANGED
@@ -1,10 +1,11 @@
 
1
  import os
2
  import zipfile
3
  from typing import List
4
 
5
  import datasets
6
  import pandas as pd
7
- from datasets import ClassLabel, Value, load_dataset
8
 
9
  _URLS = {
10
  "go_emotions": {
@@ -18,6 +19,10 @@ _URLS = {
18
  "daily_dialog": {
19
  "urls": ["http://yanran.li/files/ijcnlp_dailydialog.zip"],
20
  "license": "CC BY-NC-SA 4.0"
 
 
 
 
21
  }
22
  }
23
 
@@ -79,6 +84,11 @@ class EmotionsDataset(datasets.GeneratorBasedBuilder):
79
  name="daily_dialog",
80
  label_classes=_CLASS_NAMES,
81
  features=["text", "label", "dataset", "license"]
 
 
 
 
 
82
  )
83
  ]
84
 
@@ -101,7 +111,7 @@ class EmotionsDataset(datasets.GeneratorBasedBuilder):
101
  splits = []
102
  if self.config.name == "all":
103
  for k, v in _URLS.items():
104
- downloaded_files = dl_manager.download_and_extract(v.get("urls"))
105
  splits.append(datasets.SplitGenerator(name=k,
106
  gen_kwargs={"filepaths": downloaded_files,
107
  "dataset": k,
@@ -109,13 +119,41 @@ class EmotionsDataset(datasets.GeneratorBasedBuilder):
109
  else:
110
  k = self.config.name
111
  v = _URLS.get(k)
112
- downloaded_files = dl_manager.download_and_extract(v.get("urls"))
113
  splits.append(datasets.SplitGenerator(name=k,
114
  gen_kwargs={"filepaths": downloaded_files,
115
  "dataset": k,
116
  "license": v.get("license")}))
117
  return splits
118
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
  def _generate_examples(self, filepaths, dataset, license):
120
  if dataset == "go_emotions":
121
  for i, filepath in enumerate(filepaths):
@@ -131,33 +169,11 @@ class EmotionsDataset(datasets.GeneratorBasedBuilder):
131
  "license": license,
132
  "label": row[current_classes][row == 1].index.item()}
133
  elif dataset == "daily_dialog":
134
- # TODO move outside
135
- emo_mapping = {0: "no emotion", 1: "anger", 2: "disgust",
136
- 3: "fear", 4: "happiness", 5: "sadness", 6: "surprise"}
137
  for i, filepath in enumerate(filepaths):
138
- if os.path.isdir(filepath):
139
- emotions = open(os.path.join(filepath, "ijcnlp_dailydialog/dialogues_emotion.txt"), "r").read()
140
- text = open(os.path.join(filepath, "ijcnlp_dailydialog/dialogues_text.txt"), "r").read()
141
- else:
142
- # TODO check if this can be removed
143
- archive = zipfile.ZipFile(filepath, 'r')
144
- emotions = archive.open("ijcnlp_dailydialog/dialogues_emotion.txt", "r").read().decode()
145
- text = archive.open("ijcnlp_dailydialog/dialogues_text.txt", "r").read().decode()
146
- emotions = emotions.split("\n")
147
- text = text.split("\n")
148
-
149
- for idx_out, (e, t) in enumerate(zip(emotions, text)):
150
- if len(t.strip()) > 0:
151
- cast_emotions = [int(j) for j in e.strip().split(" ")]
152
- cast_dialog = [d.strip() for d in t.split("__eou__") if len(d)]
153
- for idx_in, (ce, ct) in enumerate(zip(cast_emotions, cast_dialog)):
154
- uid = f"daily_dialog_{i}_{idx_out}_{idx_in}"
155
- yield uid, {"text": ct,
156
- "id": uid,
157
- "dataset": dataset,
158
- "license": license,
159
- "label": emo_mapping[ce]}
160
-
161
-
162
- temp = load_dataset("ma2za/emotions_dataset", name="daily_dialog")
163
- print()
 
1
+ import json
2
  import os
3
  import zipfile
4
  from typing import List
5
 
6
  import datasets
7
  import pandas as pd
8
+ from datasets import ClassLabel, Value
9
 
10
  _URLS = {
11
  "go_emotions": {
 
19
  "daily_dialog": {
20
  "urls": ["http://yanran.li/files/ijcnlp_dailydialog.zip"],
21
  "license": "CC BY-NC-SA 4.0"
22
+ },
23
+ "emotion": {
24
+ "data": ["data/data.jsonl.gz"],
25
+ "license": "educational/research"
26
  }
27
  }
28
 
 
84
  name="daily_dialog",
85
  label_classes=_CLASS_NAMES,
86
  features=["text", "label", "dataset", "license"]
87
+ ),
88
+ EmotionsDatasetConfig(
89
+ name="emotion",
90
+ label_classes=_CLASS_NAMES,
91
+ features=["text", "label", "dataset", "license"]
92
  )
93
  ]
94
 
 
111
  splits = []
112
  if self.config.name == "all":
113
  for k, v in _URLS.items():
114
+ downloaded_files = dl_manager.download_and_extract(v.get("urls", v.get("data")))
115
  splits.append(datasets.SplitGenerator(name=k,
116
  gen_kwargs={"filepaths": downloaded_files,
117
  "dataset": k,
 
119
  else:
120
  k = self.config.name
121
  v = _URLS.get(k)
122
+ downloaded_files = dl_manager.download_and_extract(v.get("urls", v.get("data")))
123
  splits.append(datasets.SplitGenerator(name=k,
124
  gen_kwargs={"filepaths": downloaded_files,
125
  "dataset": k,
126
  "license": v.get("license")}))
127
  return splits
128
 
129
+ def process_daily_dialog(self, filepaths, dataset):
130
+ # TODO move outside
131
+ emo_mapping = {0: "no emotion", 1: "anger", 2: "disgust",
132
+ 3: "fear", 4: "happiness", 5: "sadness", 6: "surprise"}
133
+ for i, filepath in enumerate(filepaths):
134
+ if os.path.isdir(filepath):
135
+ emotions = open(os.path.join(filepath, "ijcnlp_dailydialog/dialogues_emotion.txt"), "r").read()
136
+ text = open(os.path.join(filepath, "ijcnlp_dailydialog/dialogues_text.txt"), "r").read()
137
+ else:
138
+ # TODO check if this can be removed
139
+ archive = zipfile.ZipFile(filepath, 'r')
140
+ emotions = archive.open("ijcnlp_dailydialog/dialogues_emotion.txt", "r").read().decode()
141
+ text = archive.open("ijcnlp_dailydialog/dialogues_text.txt", "r").read().decode()
142
+ emotions = emotions.split("\n")
143
+ text = text.split("\n")
144
+
145
+ for idx_out, (e, t) in enumerate(zip(emotions, text)):
146
+ if len(t.strip()) > 0:
147
+ cast_emotions = [int(j) for j in e.strip().split(" ")]
148
+ cast_dialog = [d.strip() for d in t.split("__eou__") if len(d)]
149
+ for idx_in, (ce, ct) in enumerate(zip(cast_emotions, cast_dialog)):
150
+ uid = f"daily_dialog_{i}_{idx_out}_{idx_in}"
151
+ yield uid, {"text": ct,
152
+ "id": uid,
153
+ "dataset": dataset,
154
+ "license": license,
155
+ "label": emo_mapping[ce]}
156
+
157
  def _generate_examples(self, filepaths, dataset, license):
158
  if dataset == "go_emotions":
159
  for i, filepath in enumerate(filepaths):
 
169
  "license": license,
170
  "label": row[current_classes][row == 1].index.item()}
171
  elif dataset == "daily_dialog":
172
+ yield self.process_daily_dialog(filepaths, dataset)
173
+ elif dataset == "emotion":
 
174
  for i, filepath in enumerate(filepaths):
175
+ with open(filepath, encoding="utf-8") as f:
176
+ for idx, line in enumerate(f):
177
+ uid = f"{dataset}_{idx}"
178
+ example = json.loads(line)
179
+ yield uid, example