File size: 7,277 Bytes
76d354c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dd0486
 
 
 
 
 
 
 
76d354c
2dd0486
76d354c
2dd0486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca75b0c
2dd0486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53eb02d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dd0486
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
---
dataset_info:
  features:
  - name: tokens
    sequence: string
  - name: tags
    sequence:
      class_label:
        names:
          '0': O
          '1': r0:arg0
          '2': r0:arg1
          '3': r0:arg2
          '4': r0:root
          '5': r10:arg0
          '6': r10:arg1
          '7': r10:root
          '8': r11:arg0
          '9': r11:root
          '10': r12:arg1
          '11': r12:root
          '12': r13:arg1
          '13': r13:root
          '14': r1:arg0
          '15': r1:arg1
          '16': r1:arg2
          '17': r1:root
          '18': r2:arg0
          '19': r2:arg1
          '20': r2:arg2
          '21': r2:root
          '22': r3:arg0
          '23': r3:arg1
          '24': r3:arg2
          '25': r3:root
          '26': r4:arg0
          '27': r4:arg1
          '28': r4:arg2
          '29': r4:root
          '30': r5:arg0
          '31': r5:arg1
          '32': r5:arg2
          '33': r5:root
          '34': r6:arg0
          '35': r6:arg1
          '36': r6:arg2
          '37': r6:root
          '38': r7:arg0
          '39': r7:arg1
          '40': r7:arg2
          '41': r7:root
          '42': r8:arg0
          '43': r8:arg1
          '44': r8:arg2
          '45': r8:root
          '46': r9:arg0
          '47': r9:arg1
          '48': r9:arg2
          '49': r9:root
  - name: ids
    dtype: int64
  splits:
  - name: train
    num_bytes: 2241310
    num_examples: 3986
  - name: test
    num_bytes: 555760
    num_examples: 997
  download_size: 675236
  dataset_size: 2797070
license: apache-2.0
task_categories:
- token-classification
language:
- gl
pretty_name: GalicianSRL
size_categories:
- 1K<n<10K
---
# Dataset Card for GalicianSRL

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Limitations](#limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Citation Information](#citation-information)

## Dataset Description

- **Repository:** [GalicianSRL Project Hub](https://github.com/mbruton0426/GalicianSRL)
- **Paper:** To be updated 
- **Point of Contact:** [Micaella Bruton](mailto:[email protected])

### Dataset Summary

The GalicianSRL dataset is a Galician-language dataset of tokenized sentences and the semantic role for each token within a sentence. Semantic roles are limited to verbal roots, argument 0, argument 1, and argument 2. This dataset was created to support the task of semantic role labeling in the Galician language, as no publically available datasets existed as of the date of publication to the contributor's knowledge.

### Languages

The text in the dataset is in Galician.

## Dataset Structure

### Data Instances

A typical data point comprises a tokenized sentence, tags for each token, and a sentence id number. An example from the GalicianSRL dataset looks as follows:
```
{'tokens': ['O', 'Pleno', 'poderá', ',', 'con', 'todo', ',', 'avocar', 'en', 'calquera', 'momento', 'o', 'debate', 'e', 'votación', 'de', 'calquera', 'proxecto', 'ou', 'proposición', 'de', 'lei', 'que', 'xa', 'fora', 'obxecto', 'de', 'esta', 'delegación', '.'],
 'tags': [0, 1, 4, 0, 0, 0, 0, 17, 0, 0, 16, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 'ids': 504}
```
Tags are assigned an id number according to the index of its label as listed in:

```python
>>> dataset['train'].features['tags'].feature.names
```

### Data Fields

- `tokens`: a list of strings
- `tags`: a list of integers
- `ids`: a sentence id, as an integer

### Data Splits

The data is split into a training and test set. The final structure and split sizes are as follow:

```
DatasetDict({
    train: Dataset({
        features: ['tokens', 'tags', 'ids'],
        num_rows: 1005
    })
    test: Dataset({
        features: ['tokens', 'tags', 'ids'],
        num_rows: 252
    })
})
```

## Dataset Creation

### Curation Rationale

GalicianSRL was built to provide a dataset for semantic role labeling in Galician and expand NLP resources available for the Galician language. 

### Source Data

#### Initial Data Collection and Normalization

Data was collected from both the [CTG UD annotated corpus](https://github.com/UniversalDependencies/UD_Galician-CTG) and the [TreeGal UD annotated corpus](https://github.com/UniversalDependencies/UD_Galician-TreeGal), and combined to collect the requsite information for this task. For more information, please refer to the publication listed in the citation.

## Considerations for Using the Data

### Limitations

The purpose of this dataset is to help develop a working semantic role labeling system for Galician, as SRL systems have been shown to improve a variety of NLP tasks. It should be noted however that Galician is considered a low-resource language at this time, and as such the dataset has an extrememly limited scope. This dataset would benefit from manual validation of a native speaker of Galician, the inclusion of additional sentences, and an extention of arguments past arg0, arg1, and arg2.

## Additional Information

### Dataset Curators

The dataset was created by Micaella Bruton, as part of her Master's thesis.

### Citation Information

```
@inproceedings{bruton-beloucif-2023-bertie,
    title = "{BERT}ie Bott{'}s Every Flavor Labels: A Tasty Introduction to Semantic Role Labeling for {G}alician",
    author = "Bruton, Micaella  and
      Beloucif, Meriem",
    editor = "Bouamor, Houda  and
      Pino, Juan  and
      Bali, Kalika",
    booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2023",
    address = "Singapore",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.emnlp-main.671",
    doi = "10.18653/v1/2023.emnlp-main.671",
    pages = "10892--10902",
    abstract = "In this paper, we leverage existing corpora, WordNet, and dependency parsing to build the first Galician dataset for training semantic role labeling systems in an effort to expand available NLP resources. Additionally, we introduce verb indexing, a new pre-processing method, which helps increase the performance when semantically parsing highly-complex sentences. We use transfer-learning to test both the resource and the verb indexing method. Our results show that the effects of verb indexing were amplified in scenarios where the model was both pre-trained and fine-tuned on datasets utilizing the method, but improvements are also noticeable when only used during fine-tuning. The best-performing Galician SRL model achieved an f1 score of 0.74, introducing a baseline for future Galician SRL systems. We also tested our method on Spanish where we achieved an f1 score of 0.83, outperforming the baseline set by the 2009 CoNLL Shared Task by 0.025 showing the merits of our verb indexing method for pre-processing.",
}
```