File size: 2,749 Bytes
6b37d32
 
 
 
 
 
 
 
 
9da8d49
 
6b37d32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f232790
6b37d32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f232790
6b37d32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abd9f5c
9da8d49
6b37d32
6dca89f
5b92355
 
 
 
6b37d32
 
 
abd9f5c
6b37d32
7a3ec00
 
6b37d32
242d722
 
 
 
 
 
bd5b00e
 
 
 
9f237a8
 
9016ce4
 
 
 
6a5dc05
9016ce4
b3532a3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
---
dataset_info:
  features:
  - name: task
    dtype: string
  - name: org
    dtype: string
  - name: model
    dtype: string
  - name: hardware
    dtype: string
  - name: date
    dtype: string
  - name: prefill
    struct:
    - name: efficency
      struct:
      - name: unit
        dtype: string
      - name: value
        dtype: float64
    - name: energy
      struct:
      - name: cpu
        dtype: float64
      - name: gpu
        dtype: float64
      - name: ram
        dtype: float64
      - name: total
        dtype: float64
      - name: unit
        dtype: string
  - name: decode
    struct:
    - name: efficiency
      struct:
      - name: unit
        dtype: string
      - name: value
        dtype: float64
    - name: energy
      struct:
      - name: cpu
        dtype: float64
      - name: gpu
        dtype: float64
      - name: ram
        dtype: float64
      - name: total
        dtype: float64
      - name: unit
        dtype: string
  - name: preprocess
    struct:
    - name: efficiency
      struct:
      - name: unit
        dtype: string
      - name: value
        dtype: float64
    - name: energy
      struct:
      - name: cpu
        dtype: float64
      - name: gpu
        dtype: float64
      - name: ram
        dtype: float64
      - name: total
        dtype: float64
      - name: unit
        dtype: string
  splits:
  - name: benchmark_results
    num_bytes: 1886
    num_examples: 7
  - name: train
    num_bytes: 2446
    num_examples: 9
  download_size: 75548
  dataset_size: 4332
configs:
- config_name: default
  data_files:
  - split: benchmark_results
    path: data/train-*
  - split: train
    path: data/train-*
---

# Analysis of energy usage for HUGS models

Based on the [energy_star branch](https://github.com/huggingface/optimum-benchmark/tree/energy_star_dev) of [optimum-benchmark](https://github.com/huggingface/optimum-benchmark), and using [codecarbon](https://pypi.org/project/codecarbon/2.1.4/).

# Fields
- **task**: Task the model was benchmarked on.
- **org**: Organization hosting the model.
- **model**: The specific model. Model names at HF are usually constructed with {org}/{model}.
- **date**: The date that the benchmark was run.
- **prefill**: The esimated energy and efficiency for prefilling.
- **decode**: The estimated energy and efficiency for decoding.
- **preprocess**: The estimated energy and efficiency for preprocessing.

# Code to Reproduce

As I'm devving, I'm hopping between https://huggingface.co/spaces/AIEnergyScore/benchmark-hugs-models and https://huggingface.co/spaces/meg/CalculateCarbon

From there, `python code/make_pretty_dataset.py` (included in this repository) takes the raw results and uploads them to the dataset here.