Mehmet Kuecuek commited on
Commit
e76a6f7
·
1 Parent(s): 2a9deb7

Upload 8 files

Browse files
Files changed (8) hide show
  1. barrylyndon.txt +50 -0
  2. pdf2txt.py +3 -3
  3. plot.ipynb +0 -0
  4. plot_freq_saveopt.py +85 -0
  5. plot_freq_tag.py +76 -0
  6. plot_tk.py +49 -0
  7. textconv.ipynb +0 -0
  8. tokenize.py +7 -0
barrylyndon.txt ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ This is the opening monologue of Roderick for testing purposes for tokenization.
2
+ Source: http://dailyscript.com/scripts/BarryLyndon.html
3
+
4
+ My father, who was well-known to the
5
+ best circles in this kingdom under
6
+ the name of roaring Harry James, was
7
+ killed in a duel, when I was fifteen
8
+ years old.
9
+ My mother, after her husband's
10
+ death, and her retirement, lived in
11
+ such a way as to defy slander. She
12
+ refused all offers of marriage,
13
+ declaring that she lived now for her
14
+ son only, and for the memory of her
15
+ departed saint.
16
+ My mother was the most beautiful
17
+ women of her day. But if she was
18
+ proud of her beauty, to do her
19
+ justice, she was still more proud of
20
+ her son, and has said a thousand
21
+ times to me that I was the
22
+ handsomest fellow in the world.
23
+ The good soul's pleasure was to
24
+ dress me; and on Sundays and
25
+ Holidays, I turned out in a velvet
26
+ coat with a silver-hilted sword by
27
+ my side, and a gold garter at my
28
+ knee as fine as any lord in the
29
+ land. As we walked to church on
30
+ Sundays, even the most envious souls
31
+ would allow that there was not a
32
+ prettier pair in the kingdom.
33
+ My uncle's family consisted of ten
34
+ children, and one of them was the
35
+ cause of all my early troubles; this
36
+ was the belle of the family, my
37
+ cousin, Miss Dorothy Dugan, by name.
38
+ Ah! That first affair, how well one
39
+ remembers it! What a noble
40
+ discovery it is that the boy makes
41
+ when he finds himself actually and
42
+ truly in love with some one! A lady
43
+ who is skilled in dancing or singing
44
+ never can perfect herself without a
45
+ deal of study in private. So it is
46
+ with the dear creatures who are
47
+ skilled in coquetting. Dorothy, for
48
+ instance, was always practicing, and
49
+ she would take poor me to rehearse
50
+ her accomplishments upon...
pdf2txt.py CHANGED
@@ -14,10 +14,10 @@ def pdf_to_txt(pdf_path, txt_path):
14
  print("PDF converted to TXT successfully!")
15
 
16
  # Specify the path to your PDF file
17
- pdf_path = ''
18
 
19
  # Specify the path to save the TXT file
20
- txt_path = ''
21
 
22
  # Call the function to convert PDF to TXT
23
- pdf_to_txt(pdf_path, txt_path)
 
14
  print("PDF converted to TXT successfully!")
15
 
16
  # Specify the path to your PDF file
17
+ pdf_path = 'path/to/input.pdf'
18
 
19
  # Specify the path to save the TXT file
20
+ txt_path = 'path/to/output.txt'
21
 
22
  # Call the function to convert PDF to TXT
23
+ pdf_to_txt(pdf_path, txt_path)
plot.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
plot_freq_saveopt.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # with this code you can tokenize words of screenplays (txt files)
2
+ # this is not tested yet
3
+
4
+ import tkinter as tk
5
+ from tkinter import filedialog
6
+ import nltk
7
+ import pandas as pd
8
+ import matplotlib.pyplot as plt
9
+ from nltk.tokenize import word_tokenize
10
+ from nltk.probability import FreqDist
11
+ from nltk.corpus import wordnet
12
+
13
+
14
+ def get_word_type(word):
15
+ pos_tag = nltk.pos_tag([word])[0][1]
16
+ word_type = wordnet.synsets(word, pos=get_wordnet_pos(pos_tag))
17
+ if word_type:
18
+ return word_type[0].pos()
19
+ return None
20
+
21
+
22
+ def get_wordnet_pos(treebank_tag):
23
+ if treebank_tag.startswith('J'):
24
+ return wordnet.ADJ
25
+ elif treebank_tag.startswith('V'):
26
+ return wordnet.VERB
27
+ elif treebank_tag.startswith('N'):
28
+ return wordnet.NOUN
29
+ elif treebank_tag.startswith('P'):
30
+ return wordnet.PRON
31
+ else:
32
+ return None
33
+
34
+
35
+ def process_file(file_path):
36
+ with open(file_path, 'r', encoding='utf-8') as file:
37
+ text = file.read()
38
+
39
+ tokens = word_tokenize(text)
40
+ fdist = FreqDist(tokens)
41
+
42
+ data = {'Word': [], 'Frequency': [], 'Type': []}
43
+ for word, frequency in fdist.most_common():
44
+ word_type = get_word_type(word)
45
+ if word_type:
46
+ data['Word'].append(word)
47
+ data['Frequency'].append(frequency)
48
+ data['Type'].append(word_type)
49
+ df = pd.DataFrame(data)
50
+
51
+ plt.figure(figsize=(10, 6))
52
+ plt.plot(df['Word'], df['Frequency'])
53
+ plt.xlabel('Word')
54
+ plt.ylabel('Frequency')
55
+ plt.title('Word Frequency Distribution')
56
+ plt.xticks(rotation=90)
57
+ plt.tight_layout()
58
+
59
+ # Save the plot as a PDF
60
+ plt.savefig('word_frequency_plot.pdf')
61
+ plt.close()
62
+
63
+ # Save the DataFrame as a PDF
64
+ df.to_csv('word_frequency_results.csv', index=False)
65
+
66
+ print(df)
67
+
68
+
69
+ def browse_file():
70
+ file_path = filedialog.askopenfilename(filetypes=[('Text Files', '*.txt')])
71
+ if file_path:
72
+ process_file(file_path)
73
+
74
+
75
+ # Create the main Tkinter window
76
+ root = tk.Tk()
77
+
78
+ # Create a label and a button in the main window
79
+ label = tk.Label(root, text="Drag and drop a text file here")
80
+ label.pack(pady=20)
81
+ button = tk.Button(root, text="Browse", command=browse_file)
82
+ button.pack()
83
+
84
+ # Run the Tkinter event loop
85
+ root.mainloop()
plot_freq_tag.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tkinter as tk
2
+ from tkinter import filedialog
3
+ import nltk
4
+ import pandas as pd
5
+ import matplotlib.pyplot as plt
6
+ from nltk.tokenize import word_tokenize
7
+ from nltk.probability import FreqDist
8
+ from nltk.corpus import wordnet
9
+
10
+
11
+ def get_word_type(word):
12
+ pos_tag = nltk.pos_tag([word])[0][1]
13
+ word_type = wordnet.synsets(word, pos=get_wordnet_pos(pos_tag))
14
+ if word_type:
15
+ return word_type[0].pos()
16
+ return None
17
+
18
+
19
+ def get_wordnet_pos(treebank_tag):
20
+ if treebank_tag.startswith('J'):
21
+ return wordnet.ADJ
22
+ elif treebank_tag.startswith('V'):
23
+ return wordnet.VERB
24
+ elif treebank_tag.startswith('N'):
25
+ return wordnet.NOUN
26
+ elif treebank_tag.startswith('P'):
27
+ return wordnet.PRON
28
+ else:
29
+ return None
30
+
31
+
32
+ def process_file(file_path):
33
+ with open(file_path, 'r', encoding='utf-8') as file:
34
+ text = file.read()
35
+
36
+ tokens = word_tokenize(text)
37
+ fdist = FreqDist(tokens)
38
+
39
+ data = {'Word': [], 'Frequency': [], 'Type': []}
40
+ for word, frequency in fdist.most_common():
41
+ word_type = get_word_type(word)
42
+ if word_type:
43
+ data['Word'].append(word)
44
+ data['Frequency'].append(frequency)
45
+ data['Type'].append(word_type)
46
+ df = pd.DataFrame(data)
47
+
48
+ plt.figure(figsize=(10, 6))
49
+ plt.plot(df['Word'], df['Frequency'])
50
+ plt.xlabel('Word')
51
+ plt.ylabel('Frequency')
52
+ plt.title('Word Frequency Distribution')
53
+ plt.xticks(rotation=90)
54
+ plt.tight_layout()
55
+ plt.show()
56
+
57
+ print(df)
58
+
59
+
60
+ def browse_file():
61
+ file_path = filedialog.askopenfilename(filetypes=[('Text Files', '*.txt')])
62
+ if file_path:
63
+ process_file(file_path)
64
+
65
+
66
+ # Create the main Tkinter window
67
+ root = tk.Tk()
68
+
69
+ # Create a label and a button in the main window
70
+ label = tk.Label(root, text="Drag and drop a text file here")
71
+ label.pack(pady=20)
72
+ button = tk.Button(root, text="Browse", command=browse_file)
73
+ button.pack()
74
+
75
+ # Run the Tkinter event loop
76
+ root.mainloop()
plot_tk.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tkinter as tk
2
+ from tkinter import filedialog
3
+ import nltk
4
+ import pandas as pd
5
+ import matplotlib.pyplot as plt
6
+ from nltk.tokenize import word_tokenize
7
+ from nltk.probability import FreqDist
8
+
9
+
10
+ def process_file(file_path):
11
+ with open(file_path, 'r', encoding='utf-8') as file:
12
+ text = file.read()
13
+
14
+ tokens = word_tokenize(text)
15
+ fdist = FreqDist(tokens)
16
+
17
+ data = {'Word': [], 'Frequency': []}
18
+ for word, frequency in fdist.most_common():
19
+ data['Word'].append(word)
20
+ data['Frequency'].append(frequency)
21
+ df = pd.DataFrame(data)
22
+
23
+ plt.figure(figsize=(10, 6))
24
+ plt.plot(df['Word'], df['Frequency'])
25
+ plt.xlabel('Word')
26
+ plt.ylabel('Frequency')
27
+ plt.title('Word Frequency Distribution')
28
+ plt.xticks(rotation=90)
29
+ plt.tight_layout()
30
+ plt.show()
31
+
32
+
33
+ def browse_file():
34
+ file_path = filedialog.askopenfilename(filetypes=[('Text Files', '*.txt')])
35
+ if file_path:
36
+ process_file(file_path)
37
+
38
+
39
+ # Create the main Tkinter window
40
+ root = tk.Tk()
41
+
42
+ # Create a label and a button in the main window
43
+ label = tk.Label(root, text="Drag and drop a text file here")
44
+ label.pack(pady=20)
45
+ button = tk.Button(root, text="Browse", command=browse_file)
46
+ button.pack()
47
+
48
+ # Run the Tkinter event loop
49
+ root.mainloop()
textconv.ipynb CHANGED
The diff for this file is too large to render. See raw diff
 
tokenize.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ import nltk
2
+
3
+ text = "James rides a bicycle"
4
+ tokens = nltk.word_tokenize(text)
5
+ ps_tags = nltk.pos_tag(tokens)
6
+
7
+ print(pos_tags)