File size: 10,056 Bytes
ff0df65
 
 
 
 
c691da3
ff0df65
c691da3
ff0df65
 
 
 
 
 
 
 
 
 
 
bdddd87
8123a62
df99ab4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff0df65
 
 
 
 
bdddd87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff0df65
 
 
8570da1
ff0df65
8570da1
ff0df65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e67d674
ff0df65
 
 
 
 
e67d674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff0df65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e67d674
 
 
 
 
ff0df65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e67d674
ff0df65
 
 
e67d674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24eb654
 
 
df99ab4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
---
annotations_creators:
- crowdsourced
language_creators:
- found
language:
- en
license:
- ms-pl
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- extractive-qa
paperswithcode_id: null
pretty_name: Microsoft Research Sequential Question Answering
dataset_info:
  features:
  - name: id
    dtype: string
  - name: annotator
    dtype: int32
  - name: position
    dtype: int32
  - name: question
    dtype: string
  - name: question_and_history
    sequence: string
  - name: table_file
    dtype: string
  - name: table_header
    sequence: string
  - name: table_data
    sequence:
      sequence: string
  - name: answer_coordinates
    sequence:
    - name: row_index
      dtype: int32
    - name: column_index
      dtype: int32
  - name: answer_text
    sequence: string
  splits:
  - name: test
    num_bytes: 5105873
    num_examples: 3012
  - name: train
    num_bytes: 19732499
    num_examples: 12276
  - name: validation
    num_bytes: 3738331
    num_examples: 2265
  download_size: 4796932
  dataset_size: 28576703
---

# Dataset Card for Microsoft Research Sequential Question Answering

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [Microsoft Research Sequential Question Answering (SQA) Dataset](https://msropendata.com/datasets/b25190ed-0f59-47b1-9211-5962858142c2)
- **Repository:**
- **Paper:** [https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/acl17-dynsp.pdf](https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/acl17-dynsp.pdf)
- **Leaderboard:**
- **Point of Contact:**
  - Scott Wen-tau Yih        [email protected]
  - Mohit Iyyer              [email protected]
  - Ming-Wei Chang           [email protected]

### Dataset Summary

Recent work in semantic parsing for question answering has focused on long and complicated questions, many of which would seem unnatural if asked in a normal conversation between two humans. In an effort to explore a conversational QA setting, we present a more realistic task: answering sequences of simple but inter-related questions.

We created SQA by asking crowdsourced workers to decompose 2,022 questions from WikiTableQuestions (WTQ)*, which contains highly-compositional questions about tables from Wikipedia. We had three workers decompose each WTQ question, resulting in a dataset of 6,066 sequences that contain 17,553 questions in total. Each question is also associated with answers in the form of cell locations in the tables.

- Panupong Pasupat, Percy Liang. "Compositional Semantic Parsing on Semi-Structured Tables" ACL-2015.
  [http://www-nlp.stanford.edu/software/sempre/wikitable/](http://www-nlp.stanford.edu/software/sempre/wikitable/)

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

English (`en`).

## Dataset Structure

### Data Instances

```
{'id': 'nt-639',
 'annotator': 0,
 'position': 0,
 'question': 'where are the players from?',
 'table_file': 'table_csv/203_149.csv',
 'table_header': ['Pick', 'Player', 'Team', 'Position', 'School'],
 'table_data': [['1',
   'Ben McDonald',
   'Baltimore Orioles',
   'RHP',
   'Louisiana State University'],
  ['2',
   'Tyler Houston',
   'Atlanta Braves',
   'C',
   '"Valley HS (Las Vegas',
   ' NV)"'],
  ['3', 'Roger Salkeld', 'Seattle Mariners', 'RHP', 'Saugus (CA) HS'],
  ['4',
   'Jeff Jackson',
   'Philadelphia Phillies',
   'OF',
   '"Simeon HS (Chicago',
   ' IL)"'],
  ['5', 'Donald Harris', 'Texas Rangers', 'OF', 'Texas Tech University'],
  ['6', 'Paul Coleman', 'Saint Louis Cardinals', 'OF', 'Frankston (TX) HS'],
  ['7', 'Frank Thomas', 'Chicago White Sox', '1B', 'Auburn University'],
  ['8', 'Earl Cunningham', 'Chicago Cubs', 'OF', 'Lancaster (SC) HS'],
  ['9',
   'Kyle Abbott',
   'California Angels',
   'LHP',
   'Long Beach State University'],
  ['10',
   'Charles Johnson',
   'Montreal Expos',
   'C',
   '"Westwood HS (Fort Pierce',
   ' FL)"'],
  ['11',
   'Calvin Murray',
   'Cleveland Indians',
   '3B',
   '"W.T. White High School (Dallas',
   ' TX)"'],
  ['12', 'Jeff Juden', 'Houston Astros', 'RHP', 'Salem (MA) HS'],
  ['13', 'Brent Mayne', 'Kansas City Royals', 'C', 'Cal State Fullerton'],
  ['14',
   'Steve Hosey',
   'San Francisco Giants',
   'OF',
   'Fresno State University'],
  ['15',
   'Kiki Jones',
   'Los Angeles Dodgers',
   'RHP',
   '"Hillsborough HS (Tampa',
   ' FL)"'],
  ['16', 'Greg Blosser', 'Boston Red Sox', 'OF', 'Sarasota (FL) HS'],
  ['17', 'Cal Eldred', 'Milwaukee Brewers', 'RHP', 'University of Iowa'],
  ['18',
   'Willie Greene',
   'Pittsburgh Pirates',
   'SS',
   '"Jones County HS (Gray',
   ' GA)"'],
  ['19', 'Eddie Zosky', 'Toronto Blue Jays', 'SS', 'Fresno State University'],
  ['20', 'Scott Bryant', 'Cincinnati Reds', 'OF', 'University of Texas'],
  ['21', 'Greg Gohr', 'Detroit Tigers', 'RHP', 'Santa Clara University'],
  ['22',
   'Tom Goodwin',
   'Los Angeles Dodgers',
   'OF',
   'Fresno State University'],
  ['23', 'Mo Vaughn', 'Boston Red Sox', '1B', 'Seton Hall University'],
  ['24', 'Alan Zinter', 'New York Mets', 'C', 'University of Arizona'],
  ['25', 'Chuck Knoblauch', 'Minnesota Twins', '2B', 'Texas A&M University'],
  ['26', 'Scott Burrell', 'Seattle Mariners', 'RHP', 'Hamden (CT) HS']],
 'answer_coordinates': {'row_index': [0,
   1,
   2,
   3,
   4,
   5,
   6,
   7,
   8,
   9,
   10,
   11,
   12,
   13,
   14,
   15,
   16,
   17,
   18,
   19,
   20,
   21,
   22,
   23,
   24,
   25],
  'column_index': [4,
   4,
   4,
   4,
   4,
   4,
   4,
   4,
   4,
   4,
   4,
   4,
   4,
   4,
   4,
   4,
   4,
   4,
   4,
   4,
   4,
   4,
   4,
   4,
   4,
   4]},
 'answer_text': ['Louisiana State University',
  'Valley HS (Las Vegas, NV)',
  'Saugus (CA) HS',
  'Simeon HS (Chicago, IL)',
  'Texas Tech University',
  'Frankston (TX) HS',
  'Auburn University',
  'Lancaster (SC) HS',
  'Long Beach State University',
  'Westwood HS (Fort Pierce, FL)',
  'W.T. White High School (Dallas, TX)',
  'Salem (MA) HS',
  'Cal State Fullerton',
  'Fresno State University',
  'Hillsborough HS (Tampa, FL)',
  'Sarasota (FL) HS',
  'University of Iowa',
  'Jones County HS (Gray, GA)',
  'Fresno State University',
  'University of Texas',
  'Santa Clara University',
  'Fresno State University',
  'Seton Hall University',
  'University of Arizona',
  'Texas A&M University',
  'Hamden (CT) HS']}
```

### Data Fields

- `id` (`str`): question sequence id (the id is consistent with those in WTQ)
- `annotator` (`int`): `0`, `1`, `2` (the 3 annotators who annotated the question intent)
- `position` (`int`): the position of the question in the sequence
- `question` (`str`): the question given by the annotator
- `table_file` (`str`): the associated table
- `table_header` (`List[str]`): a list of headers in the table
- `table_data` (`List[List[str]]`): 2d array of data in the table
- `answer_coordinates` (`List[Dict]`): the table cell coordinates of the answers (0-based, where 0 is the first row after the table header)
  - `row_index`
  - `column_index`
- `answer_text` (`List[str]`): the content of the answer cells

Note that some text fields may contain Tab or LF characters and thus start with quotes.
It is recommended to use a CSV parser like the Python CSV package to process the data.

### Data Splits


|             | train | test |
|-------------|------:|-----:|
| N. examples | 14541 | 3012 |


## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[Microsoft Research Data License Agreement](https://msropendata-web-api.azurewebsites.net/licenses/2f933be3-284d-500b-7ea3-2aa2fd0f1bb2/view).

### Citation Information

```
@inproceedings{iyyer-etal-2017-search,
    title = "Search-based Neural Structured Learning for Sequential Question Answering",
    author = "Iyyer, Mohit  and
      Yih, Wen-tau  and
      Chang, Ming-Wei",
    booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = jul,
    year = "2017",
    address = "Vancouver, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/P17-1167",
    doi = "10.18653/v1/P17-1167",
    pages = "1821--1831",
}

```

### Contributions

Thanks to [@mattbui](https://github.com/mattbui) for adding this dataset.