File size: 10,056 Bytes
ff0df65 c691da3 ff0df65 c691da3 ff0df65 bdddd87 8123a62 df99ab4 ff0df65 bdddd87 ff0df65 8570da1 ff0df65 8570da1 ff0df65 e67d674 ff0df65 e67d674 ff0df65 e67d674 ff0df65 e67d674 ff0df65 e67d674 24eb654 df99ab4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
---
annotations_creators:
- crowdsourced
language_creators:
- found
language:
- en
license:
- ms-pl
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- extractive-qa
paperswithcode_id: null
pretty_name: Microsoft Research Sequential Question Answering
dataset_info:
features:
- name: id
dtype: string
- name: annotator
dtype: int32
- name: position
dtype: int32
- name: question
dtype: string
- name: question_and_history
sequence: string
- name: table_file
dtype: string
- name: table_header
sequence: string
- name: table_data
sequence:
sequence: string
- name: answer_coordinates
sequence:
- name: row_index
dtype: int32
- name: column_index
dtype: int32
- name: answer_text
sequence: string
splits:
- name: test
num_bytes: 5105873
num_examples: 3012
- name: train
num_bytes: 19732499
num_examples: 12276
- name: validation
num_bytes: 3738331
num_examples: 2265
download_size: 4796932
dataset_size: 28576703
---
# Dataset Card for Microsoft Research Sequential Question Answering
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Microsoft Research Sequential Question Answering (SQA) Dataset](https://msropendata.com/datasets/b25190ed-0f59-47b1-9211-5962858142c2)
- **Repository:**
- **Paper:** [https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/acl17-dynsp.pdf](https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/acl17-dynsp.pdf)
- **Leaderboard:**
- **Point of Contact:**
- Scott Wen-tau Yih [email protected]
- Mohit Iyyer [email protected]
- Ming-Wei Chang [email protected]
### Dataset Summary
Recent work in semantic parsing for question answering has focused on long and complicated questions, many of which would seem unnatural if asked in a normal conversation between two humans. In an effort to explore a conversational QA setting, we present a more realistic task: answering sequences of simple but inter-related questions.
We created SQA by asking crowdsourced workers to decompose 2,022 questions from WikiTableQuestions (WTQ)*, which contains highly-compositional questions about tables from Wikipedia. We had three workers decompose each WTQ question, resulting in a dataset of 6,066 sequences that contain 17,553 questions in total. Each question is also associated with answers in the form of cell locations in the tables.
- Panupong Pasupat, Percy Liang. "Compositional Semantic Parsing on Semi-Structured Tables" ACL-2015.
[http://www-nlp.stanford.edu/software/sempre/wikitable/](http://www-nlp.stanford.edu/software/sempre/wikitable/)
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
English (`en`).
## Dataset Structure
### Data Instances
```
{'id': 'nt-639',
'annotator': 0,
'position': 0,
'question': 'where are the players from?',
'table_file': 'table_csv/203_149.csv',
'table_header': ['Pick', 'Player', 'Team', 'Position', 'School'],
'table_data': [['1',
'Ben McDonald',
'Baltimore Orioles',
'RHP',
'Louisiana State University'],
['2',
'Tyler Houston',
'Atlanta Braves',
'C',
'"Valley HS (Las Vegas',
' NV)"'],
['3', 'Roger Salkeld', 'Seattle Mariners', 'RHP', 'Saugus (CA) HS'],
['4',
'Jeff Jackson',
'Philadelphia Phillies',
'OF',
'"Simeon HS (Chicago',
' IL)"'],
['5', 'Donald Harris', 'Texas Rangers', 'OF', 'Texas Tech University'],
['6', 'Paul Coleman', 'Saint Louis Cardinals', 'OF', 'Frankston (TX) HS'],
['7', 'Frank Thomas', 'Chicago White Sox', '1B', 'Auburn University'],
['8', 'Earl Cunningham', 'Chicago Cubs', 'OF', 'Lancaster (SC) HS'],
['9',
'Kyle Abbott',
'California Angels',
'LHP',
'Long Beach State University'],
['10',
'Charles Johnson',
'Montreal Expos',
'C',
'"Westwood HS (Fort Pierce',
' FL)"'],
['11',
'Calvin Murray',
'Cleveland Indians',
'3B',
'"W.T. White High School (Dallas',
' TX)"'],
['12', 'Jeff Juden', 'Houston Astros', 'RHP', 'Salem (MA) HS'],
['13', 'Brent Mayne', 'Kansas City Royals', 'C', 'Cal State Fullerton'],
['14',
'Steve Hosey',
'San Francisco Giants',
'OF',
'Fresno State University'],
['15',
'Kiki Jones',
'Los Angeles Dodgers',
'RHP',
'"Hillsborough HS (Tampa',
' FL)"'],
['16', 'Greg Blosser', 'Boston Red Sox', 'OF', 'Sarasota (FL) HS'],
['17', 'Cal Eldred', 'Milwaukee Brewers', 'RHP', 'University of Iowa'],
['18',
'Willie Greene',
'Pittsburgh Pirates',
'SS',
'"Jones County HS (Gray',
' GA)"'],
['19', 'Eddie Zosky', 'Toronto Blue Jays', 'SS', 'Fresno State University'],
['20', 'Scott Bryant', 'Cincinnati Reds', 'OF', 'University of Texas'],
['21', 'Greg Gohr', 'Detroit Tigers', 'RHP', 'Santa Clara University'],
['22',
'Tom Goodwin',
'Los Angeles Dodgers',
'OF',
'Fresno State University'],
['23', 'Mo Vaughn', 'Boston Red Sox', '1B', 'Seton Hall University'],
['24', 'Alan Zinter', 'New York Mets', 'C', 'University of Arizona'],
['25', 'Chuck Knoblauch', 'Minnesota Twins', '2B', 'Texas A&M University'],
['26', 'Scott Burrell', 'Seattle Mariners', 'RHP', 'Hamden (CT) HS']],
'answer_coordinates': {'row_index': [0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25],
'column_index': [4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4]},
'answer_text': ['Louisiana State University',
'Valley HS (Las Vegas, NV)',
'Saugus (CA) HS',
'Simeon HS (Chicago, IL)',
'Texas Tech University',
'Frankston (TX) HS',
'Auburn University',
'Lancaster (SC) HS',
'Long Beach State University',
'Westwood HS (Fort Pierce, FL)',
'W.T. White High School (Dallas, TX)',
'Salem (MA) HS',
'Cal State Fullerton',
'Fresno State University',
'Hillsborough HS (Tampa, FL)',
'Sarasota (FL) HS',
'University of Iowa',
'Jones County HS (Gray, GA)',
'Fresno State University',
'University of Texas',
'Santa Clara University',
'Fresno State University',
'Seton Hall University',
'University of Arizona',
'Texas A&M University',
'Hamden (CT) HS']}
```
### Data Fields
- `id` (`str`): question sequence id (the id is consistent with those in WTQ)
- `annotator` (`int`): `0`, `1`, `2` (the 3 annotators who annotated the question intent)
- `position` (`int`): the position of the question in the sequence
- `question` (`str`): the question given by the annotator
- `table_file` (`str`): the associated table
- `table_header` (`List[str]`): a list of headers in the table
- `table_data` (`List[List[str]]`): 2d array of data in the table
- `answer_coordinates` (`List[Dict]`): the table cell coordinates of the answers (0-based, where 0 is the first row after the table header)
- `row_index`
- `column_index`
- `answer_text` (`List[str]`): the content of the answer cells
Note that some text fields may contain Tab or LF characters and thus start with quotes.
It is recommended to use a CSV parser like the Python CSV package to process the data.
### Data Splits
| | train | test |
|-------------|------:|-----:|
| N. examples | 14541 | 3012 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[Microsoft Research Data License Agreement](https://msropendata-web-api.azurewebsites.net/licenses/2f933be3-284d-500b-7ea3-2aa2fd0f1bb2/view).
### Citation Information
```
@inproceedings{iyyer-etal-2017-search,
title = "Search-based Neural Structured Learning for Sequential Question Answering",
author = "Iyyer, Mohit and
Yih, Wen-tau and
Chang, Ming-Wei",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-1167",
doi = "10.18653/v1/P17-1167",
pages = "1821--1831",
}
```
### Contributions
Thanks to [@mattbui](https://github.com/mattbui) for adding this dataset. |