File size: 5,334 Bytes
ff0df65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
---
annotations_creators:
- crowdsourced
language_creators:
- found
languages:
- en
licenses:
- ms-pl
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- extractive-qa
---
# Dataset Card for Microsoft Research Sequential Question Answering
## Table of Contents
- [Dataset Card for Microsoft Research Sequential Question Answering](#dataset-card-for-microsoft-research-sequential-question-answering)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
- [Who are the source language producers?](#who-are-the-source-language-producers)
- [Annotations](#annotations)
- [Annotation process](#annotation-process)
- [Who are the annotators?](#who-are-the-annotators)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:[Microsoft Research Sequential Question Answering (SQA) Dataset](https://msropendata.com/datasets/b25190ed-0f59-47b1-9211-5962858142c2)**
- **Repository:**
- **Paper:[https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/acl17-dynsp.pdf](https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/acl17-dynsp.pdf)**
- **Leaderboard:**
- **Point of Contact:**
- Scott Wen-tau Yih [email protected]
- Mohit Iyyer [email protected]
- Ming-Wei Chang [email protected]
### Dataset Summary
Recent work in semantic parsing for question answering has focused on long and complicated questions, many of which would seem unnatural if asked in a normal conversation between two humans. In an effort to explore a conversational QA setting, we present a more realistic task: answering sequences of simple but inter-related questions.
We created SQA by asking crowdsourced workers to decompose 2,022 questions from WikiTableQuestions (WTQ)*, which contains highly-compositional questions about tables from Wikipedia. We had three workers decompose each WTQ question, resulting in a dataset of 6,066 sequences that contain 17,553 questions in total. Each question is also associated with answers in the form of cell locations in the tables.
- Panupong Pasupat, Percy Liang. "Compositional Semantic Parsing on Semi-Structured Tables" ACL-2015.
[http://www-nlp.stanford.edu/software/sempre/wikitable/](http://www-nlp.stanford.edu/software/sempre/wikitable/)
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
English
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
- `id` (`str`): question sequence id (the id is consistent with those in WTQ)
- `annotator` (`int`): `0`, `1`, `2` (the 3 annotators who annotated the question intent)
- `position` (`int`): the position of the question in the sequence
- `question` (`str`): the question given by the annotator
- `table_file` (`str`): the associated table
- `table_header` (`List[str]`): a list of headers in the table
- `table_data` (`List[List[str]]`): 2d array of data in the table
- `answer_coordinates` (`List[Dict]`): the table cell coordinates of the answers (0-based, where 0 is the first row after the table header)
- `row_index`
- `column_index`
- `answer_text` (`List[str]`): the content of the answer cells
Note that some text fields may contain Tab or LF characters and thus start with quotes.
It is recommended to use a CSV parser like the Python CSV package to process the data.
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
|