Datasets:

Modalities:
Text
Libraries:
Datasets
File size: 4,405 Bytes
268b081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d1a32a
6e4bb3b
3d1a32a
268b081
 
 
 
 
57910ac
268b081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d1a32a
 
2e34da3
268b081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57910ac
268b081
 
 
 
 
 
3d1a32a
268b081
 
 
 
 
 
 
3d1a32a
268b081
 
 
 
 
 
 
3d1a32a
268b081
 
 
 
 
 
d93f3b5
 
5e27ef9
d93f3b5
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import csv
import json
import os

import datasets
from typing import List, Any

# _SPLIT = ['train', 'test', 'valid']
_CITATION = """\
TBA
"""


_DESCRIPTION = """\
This new dataset is designed to solve kp NLP task and is crafted with a lot of care.
"""


_HOMEPAGE = ""

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

# TODO: Add link to the official dataset URLs here

_URLS = {
    "test": ["data/test.jsonl"],
    "train": "data/train",
    "valid": ["data/valid.jsonl"],
    
}


# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class LDKP10k(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("1.1.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="small", version=VERSION, description="This part of my dataset covers long document"),
        datasets.BuilderConfig(name="medium", version=VERSION, description="This part of my dataset covers abstract only"),
        datasets.BuilderConfig(name="large", version=VERSION, description="This part of my dataset covers abstract only")
       

    ]

    DEFAULT_CONFIG_NAME = "small"  

    def _info(self):
        _URLS['train']=['data/train'+"_"+self.config.name+".jsonl.zip"]
        if self.config.name=='large':
            _URLS['train']= ['data/train_large_'+str(x)+".jsonl.zip" for x in range(5)]
        
        features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "sections": datasets.features.Sequence(datasets.Value("string")),
                "sec_text": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("string"))),
                "extractive_keyphrases": datasets.features.Sequence(datasets.Value("string")),
                "abstractive_keyphrases": datasets.features.Sequence(datasets.Value("string")),
                "sec_bio_tags": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("string")))
                
            }
        )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        #print(os.listdir())
        data_dir = dl_manager.download_and_extract(_URLS)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepaths": [os.path.join(x,filename)   for x in data_dir['train'] for filename in os.listdir(x)],
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepaths": data_dir['test'],
                    "split": "test"
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepaths": data_dir['valid'],
                    "split": "valid",
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepaths, split):
        for filepath in filepaths:
            with open(filepath, encoding="utf-8") as f:
                for key, row in enumerate(f):
                    data = json.loads(row)
                    yield key, {
                        "id": data['paper_id'],
                        "sections": data["sections"],
                        "sec_text": data["sec_text"],
                        "extractive_keyphrases": data["extractive_keyphrases"],
                        "abstractive_keyphrases": data["abstractive_keyphrases"],
                        "sec_bio_tags": data["sec_bio_tags"]
                    }