File size: 4,405 Bytes
268b081 3d1a32a 6e4bb3b 3d1a32a 268b081 57910ac 268b081 3d1a32a 2e34da3 268b081 57910ac 268b081 3d1a32a 268b081 3d1a32a 268b081 3d1a32a 268b081 d93f3b5 5e27ef9 d93f3b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import csv
import json
import os
import datasets
from typing import List, Any
# _SPLIT = ['train', 'test', 'valid']
_CITATION = """\
TBA
"""
_DESCRIPTION = """\
This new dataset is designed to solve kp NLP task and is crafted with a lot of care.
"""
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
_URLS = {
"test": ["data/test.jsonl"],
"train": "data/train",
"valid": ["data/valid.jsonl"],
}
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class LDKP10k(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="small", version=VERSION, description="This part of my dataset covers long document"),
datasets.BuilderConfig(name="medium", version=VERSION, description="This part of my dataset covers abstract only"),
datasets.BuilderConfig(name="large", version=VERSION, description="This part of my dataset covers abstract only")
]
DEFAULT_CONFIG_NAME = "small"
def _info(self):
_URLS['train']=['data/train'+"_"+self.config.name+".jsonl.zip"]
if self.config.name=='large':
_URLS['train']= ['data/train_large_'+str(x)+".jsonl.zip" for x in range(5)]
features = datasets.Features(
{
"id": datasets.Value("string"),
"sections": datasets.features.Sequence(datasets.Value("string")),
"sec_text": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("string"))),
"extractive_keyphrases": datasets.features.Sequence(datasets.Value("string")),
"abstractive_keyphrases": datasets.features.Sequence(datasets.Value("string")),
"sec_bio_tags": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("string")))
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features,
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
#print(os.listdir())
data_dir = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepaths": [os.path.join(x,filename) for x in data_dir['train'] for filename in os.listdir(x)],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepaths": data_dir['test'],
"split": "test"
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepaths": data_dir['valid'],
"split": "valid",
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepaths, split):
for filepath in filepaths:
with open(filepath, encoding="utf-8") as f:
for key, row in enumerate(f):
data = json.loads(row)
yield key, {
"id": data['paper_id'],
"sections": data["sections"],
"sec_text": data["sec_text"],
"extractive_keyphrases": data["extractive_keyphrases"],
"abstractive_keyphrases": data["abstractive_keyphrases"],
"sec_bio_tags": data["sec_bio_tags"]
} |