dibyaaaaax
commited on
Commit
·
2d472e1
1
Parent(s):
2e34da3
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
A dataset for benchmarking keyphrase extraction and generation techniques from long document English scientific papers. For more details about the dataset please refer the original paper - []().
|
2 |
+
|
3 |
+
Data source - []()
|
4 |
+
|
5 |
+
## Dataset Summary
|
6 |
+
|
7 |
+
|
8 |
+
## Dataset Structure
|
9 |
+
|
10 |
+
|
11 |
+
### Data Fields
|
12 |
+
|
13 |
+
- **id**: unique identifier of the document.
|
14 |
+
- **sections**: list of all the sections present in the document.
|
15 |
+
- **sec_text**: list of white space separated list of words present in each section.
|
16 |
+
- **sec_bio_tags**: list of BIO tags of white space separated list of words present in each section.
|
17 |
+
- **extractive_keyphrases**: List of all the present keyphrases.
|
18 |
+
- **abstractive_keyphrase**: List of all the absent keyphrases.
|
19 |
+
|
20 |
+
|
21 |
+
### Data Splits
|
22 |
+
|
23 |
+
|Split| #datapoints |
|
24 |
+
|--|--|
|
25 |
+
| Train-Small | 20,000 |
|
26 |
+
| Train-Medium | 50,000 |
|
27 |
+
| Train-Large | 1,296,613 |
|
28 |
+
| Test | 10,000 |
|
29 |
+
| Validation | 10,000 |
|
30 |
+
|
31 |
+
## Usage
|
32 |
+
|
33 |
+
### Small Dataset
|
34 |
+
|
35 |
+
```python
|
36 |
+
from datasets import load_dataset
|
37 |
+
|
38 |
+
# get small dataset
|
39 |
+
dataset = load_dataset("midas/ldkp10k", "small")
|
40 |
+
|
41 |
+
def order_sections(sample):
|
42 |
+
"""
|
43 |
+
corrects the order in which different sections appear in the document.
|
44 |
+
resulting order is: title, abstract, other sections in the body
|
45 |
+
"""
|
46 |
+
|
47 |
+
sections = []
|
48 |
+
sec_text = []
|
49 |
+
sec_bio_tags = []
|
50 |
+
|
51 |
+
if "title" in sample["sections"]:
|
52 |
+
title_idx = sample["sections"].index("title")
|
53 |
+
sections.append(sample["sections"].pop(title_idx))
|
54 |
+
sec_text.append(sample["sec_text"].pop(title_idx))
|
55 |
+
sec_bio_tags.append(sample["sec_bio_tags"].pop(title_idx))
|
56 |
+
|
57 |
+
if "abstract" in sample["sections"]:
|
58 |
+
abstract_idx = sample["sections"].index("abstract")
|
59 |
+
sections.append(sample["sections"].pop(abstract_idx))
|
60 |
+
sec_text.append(sample["sec_text"].pop(abstract_idx))
|
61 |
+
sec_bio_tags.append(sample["sec_bio_tags"].pop(abstract_idx))
|
62 |
+
|
63 |
+
sections += sample["sections"]
|
64 |
+
sec_text += sample["sec_text"]
|
65 |
+
sec_bio_tags += sample["sec_bio_tags"]
|
66 |
+
|
67 |
+
return sections, sec_text, sec_bio_tags
|
68 |
+
|
69 |
+
|
70 |
+
# sample from the train split
|
71 |
+
print("Sample from train data split")
|
72 |
+
train_sample = dataset["train"][0]
|
73 |
+
|
74 |
+
sections, sec_text, sec_bio_tags = order_sections(train_sample)
|
75 |
+
print("Fields in the sample: ", [key for key in train_sample.keys()])
|
76 |
+
print("Section names: ", sections)
|
77 |
+
print("Tokenized Document: ", sec_text)
|
78 |
+
print("Document BIO Tags: ", sec_bio_tags)
|
79 |
+
print("Extractive/present Keyphrases: ", train_sample["extractive_keyphrases"])
|
80 |
+
print("Abstractive/absent Keyphrases: ", train_sample["abstractive_keyphrases"])
|
81 |
+
print("\n-----------\n")
|
82 |
+
|
83 |
+
# sample from the validation split
|
84 |
+
print("Sample from validation data split")
|
85 |
+
validation_sample = dataset["validation"][0]
|
86 |
+
|
87 |
+
sections, sec_text, sec_bio_tags = order_sections(validation_sample)
|
88 |
+
print("Fields in the sample: ", [key for key in validation_sample.keys()])
|
89 |
+
print("Section names: ", sections)
|
90 |
+
print("Tokenized Document: ", sec_text)
|
91 |
+
print("Document BIO Tags: ", sec_bio_tags)
|
92 |
+
print("Extractive/present Keyphrases: ", validation_sample["extractive_keyphrases"])
|
93 |
+
print("Abstractive/absent Keyphrases: ", validation_sample["abstractive_keyphrases"])
|
94 |
+
print("\n-----------\n")
|
95 |
+
|
96 |
+
# sample from the test split
|
97 |
+
print("Sample from test data split")
|
98 |
+
test_sample = dataset["test"][0]
|
99 |
+
|
100 |
+
sections, sec_text, sec_bio_tags = order_sections(test_sample)
|
101 |
+
print("Fields in the sample: ", [key for key in test_sample.keys()])
|
102 |
+
print("Section names: ", sections)
|
103 |
+
print("Tokenized Document: ", sec_text)
|
104 |
+
print("Document BIO Tags: ", sec_bio_tags)
|
105 |
+
print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"])
|
106 |
+
print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"])
|
107 |
+
print("\n-----------\n")
|
108 |
+
|
109 |
+
```
|
110 |
+
|
111 |
+
**Output**
|
112 |
+
```bash
|
113 |
+
|
114 |
+
```
|
115 |
+
|
116 |
+
### Medium Dataset
|
117 |
+
|
118 |
+
```python
|
119 |
+
from datasets import load_dataset
|
120 |
+
|
121 |
+
# get medium dataset
|
122 |
+
dataset = load_dataset("midas/ldkp10k", "medium")
|
123 |
+
```
|
124 |
+
|
125 |
+
### Large Dataset
|
126 |
+
|
127 |
+
```python
|
128 |
+
from datasets import load_dataset
|
129 |
+
|
130 |
+
# get large dataset
|
131 |
+
dataset = load_dataset("midas/ldkp10k", "large")
|
132 |
+
```
|
133 |
+
|
134 |
+
## Citation Information
|
135 |
+
Please cite the works below if you use this dataset in your work.
|
136 |
+
|
137 |
+
```
|
138 |
+
```
|
139 |
+
|
140 |
+
## Contributions
|
141 |
+
Thanks to [@debanjanbhucs](https://github.com/debanjanbhucs), [@dibyaaaaax](https://github.com/dibyaaaaax), [@UmaGunturi](https://github.com/UmaGunturi) and [@ad6398](https://github.com/ad6398) for adding this dataset
|