File size: 5,111 Bytes
2e750ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""CNN/Dailymail Dutch summarization dataset."""


import csv

import datasets


_DESCRIPTION = """\
    This dataset is the CNN/Dailymail dataset translated to Dutch.
    This is the original dataset:
    ```
    load_dataset("cnn_dailymail", '3.0.0')
    ```
    And this is the HuggingFace translation pipeline:
    ```
    pipeline(
        task='translation_en_to_nl',
        model='Helsinki-NLP/opus-mt-en-nl',
        tokenizer='Helsinki-NLP/opus-mt-en-nl')
    ```
"""

# The second citation introduces the source data, while the first
# introduces the specific form (non-anonymized) we use here.
_CITATION = """\
@article{DBLP:journals/corr/SeeLM17,
  author    = {Abigail See and
               Peter J. Liu and
               Christopher D. Manning},
  title     = {Get To The Point: Summarization with Pointer-Generator Networks},
  journal   = {CoRR},
  volume    = {abs/1704.04368},
  year      = {2017},
  url       = {http://arxiv.org/abs/1704.04368},
  archivePrefix = {arXiv},
  eprint    = {1704.04368},
  timestamp = {Mon, 13 Aug 2018 16:46:08 +0200},
  biburl    = {https://dblp.org/rec/bib/journals/corr/SeeLM17},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

@inproceedings{hermann2015teaching,
  title={Teaching machines to read and comprehend},
  author={Hermann, Karl Moritz and Kocisky, Tomas and Grefenstette, Edward and Espeholt, Lasse and Kay, Will and Suleyman, Mustafa and Blunsom, Phil},
  booktitle={Advances in neural information processing systems},
  pages={1693--1701},
  year={2015}
}
"""


_TRAIN_DOWNLOAD_URLS = [
    "https://huggingface.co/datasets/ml6team/cnn_dailymail_nl/resolve/main/cnn_dailymail_nl_train_000000000000.csv.gz",
    "https://huggingface.co/datasets/ml6team/cnn_dailymail_nl/resolve/main/cnn_dailymail_nl_train_000000000001.csv.gz",
    "https://huggingface.co/datasets/ml6team/cnn_dailymail_nl/resolve/main/cnn_dailymail_nl_train_000000000002.csv.gz",
]
_VALIDATION_DOWNLOAD_URL = "https://huggingface.co/datasets/ml6team/cnn_dailymail_nl/resolve/main/cnn_dailymail_nl_validation.csv.gz"
_TEST_DOWNLOAD_URL = "https://huggingface.co/datasets/ml6team/cnn_dailymail_nl/resolve/main/cnn_dailymail_nl_test.csv.gz"


_ID = "id"
_HIGHLIGHTS = "highlights"
_ARTICLE = "article"


class CnnDailymailNl(datasets.GeneratorBasedBuilder):
    """CNN/Dailymail Dutch summarization dataset."""

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    _ARTICLE: datasets.Value("string"),
                    _HIGHLIGHTS: datasets.Value("string"),
                    _ID: datasets.Value("string"),
                }
            ),
            supervised_keys=None,
            homepage="https://huggingface.co/datasets/ml6team/cnn_dailymail_nl",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        train_paths = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URLS)
        validation_path = dl_manager.download_and_extract(_VALIDATION_DOWNLOAD_URL)
        test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_paths}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepaths": [validation_path]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST, gen_kwargs={"filepaths": [test_path]}
            ),
        ]

    def _generate_examples(self, filepaths):
        """Generate Dutch CNN/Dailymail examples."""
        for filepath in filepaths:  # training data is divided over multiple shards
            with open(filepath, encoding="utf-8") as csv_file:
                csv_reader = csv.reader(
                    csv_file,
                    quotechar='"',
                    delimiter=",",
                    quoting=csv.QUOTE_ALL,
                    skipinitialspace=True,
                )
                next(csv_reader)  # skip header
                for row in csv_reader:
                    article_id, article, highlights = row
                    yield article_id, {
                        _ARTICLE: article,
                        _HIGHLIGHTS: highlights,
                        _ID: article_id,
                    }