Datasets:

Modalities:
Audio
Text
ArXiv:
Libraries:
Datasets
License:
File size: 14,665 Bytes
bc3197a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d91946a
bc3197a
d91946a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc3197a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d6249d
bc3197a
 
 
 
 
 
 
0d6249d
 
bb2e21a
402006a
 
0d6249d
 
 
402006a
0d6249d
 
bb2e21a
0d6249d
 
 
402006a
0d6249d
402006a
0d6249d
 
bb2e21a
0d6249d
 
 
 
402006a
 
 
0d6249d
 
402006a
0d6249d
 
 
 
402006a
 
0d6249d
 
402006a
 
0d6249d
 
402006a
0d6249d
bc3197a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
license:
- cc0-1.0
multilinguality:
- multilingual
size_categories:
  ab:
  - 10K<n<100K
  ar:
  - 100K<n<1M
  as:
  - 1K<n<10K
  ast:
  - n<1K
  az:
  - n<1K
  ba:
  - 100K<n<1M
  bas:
  - 1K<n<10K
  be:
  - 100K<n<1M
  bg:
  - 1K<n<10K
  bn:
  - 100K<n<1M
  br:
  - 10K<n<100K
  ca:
  - 1M<n<10M
  ckb:
  - 100K<n<1M
  cnh:
  - 1K<n<10K
  cs:
  - 10K<n<100K
  cv:
  - 10K<n<100K
  cy:
  - 100K<n<1M
  da:
  - 1K<n<10K
  de:
  - 100K<n<1M
  dv:
  - 10K<n<100K
  el:
  - 10K<n<100K
  en:
  - 1M<n<10M
  eo:
  - 1M<n<10M
  es:
  - 1M<n<10M
  et:
  - 10K<n<100K
  eu:
  - 100K<n<1M
  fa:
  - 100K<n<1M
  fi:
  - 10K<n<100K
  fr:
  - 100K<n<1M
  fy-NL:
  - 10K<n<100K
  ga-IE:
  - 1K<n<10K
  gl:
  - 10K<n<100K
  gn:
  - 1K<n<10K
  ha:
  - 1K<n<10K
  hi:
  - 10K<n<100K
  hsb:
  - 1K<n<10K
  hu:
  - 10K<n<100K
  hy-AM:
  - 1K<n<10K
  ia:
  - 10K<n<100K
  id:
  - 10K<n<100K
  ig:
  - 1K<n<10K
  it:
  - 100K<n<1M
  ja:
  - 10K<n<100K
  ka:
  - 10K<n<100K
  kab:
  - 100K<n<1M
  kk:
  - 1K<n<10K
  kmr:
  - 10K<n<100K
  ky:
  - 10K<n<100K
  lg:
  - 100K<n<1M
  lt:
  - 10K<n<100K
  lv:
  - 1K<n<10K
  mdf:
  - n<1K
  mhr:
  - 100K<n<1M
  mk:
  - n<1K
  ml:
  - 1K<n<10K
  mn:
  - 10K<n<100K
  mr:
  - 10K<n<100K
  mrj:
  - 10K<n<100K
  mt:
  - 10K<n<100K
  myv:
  - 1K<n<10K
  nan-tw:
  - 10K<n<100K
  ne-NP:
  - n<1K
  nl:
  - 10K<n<100K
  nn-NO:
  - n<1K
  or:
  - 1K<n<10K
  pa-IN:
  - 1K<n<10K
  pl:
  - 100K<n<1M
  pt:
  - 100K<n<1M
  rm-sursilv:
  - 1K<n<10K
  rm-vallader:
  - 1K<n<10K
  ro:
  - 10K<n<100K
  ru:
  - 100K<n<1M
  rw:
  - 1M<n<10M
  sah:
  - 1K<n<10K
  sat:
  - n<1K
  sc:
  - 1K<n<10K
  sk:
  - 10K<n<100K
  skr:
  - 1K<n<10K
  sl:
  - 10K<n<100K
  sr:
  - 1K<n<10K
  sv-SE:
  - 10K<n<100K
  sw:
  - 100K<n<1M
  ta:
  - 100K<n<1M
  th:
  - 100K<n<1M
  ti:
  - n<1K
  tig:
  - n<1K
  tok:
  - 1K<n<10K
  tr:
  - 10K<n<100K
  tt:
  - 10K<n<100K
  tw:
  - n<1K
  ug:
  - 10K<n<100K
  uk:
  - 10K<n<100K
  ur:
  - 100K<n<1M
  uz:
  - 100K<n<1M
  vi:
  - 10K<n<100K
  vot:
  - n<1K
  yue:
  - 10K<n<100K
  zh-CN:
  - 100K<n<1M
  zh-HK:
  - 100K<n<1M
  zh-TW:
  - 100K<n<1M
source_datasets:
- extended|common_voice
task_categories:
- automatic-speech-recognition
task_ids: []
paperswithcode_id: common-voice
pretty_name: Common Voice Corpus 11.0
language_bcp47:
- ab
- ar
- as
- ast
- az
- ba
- bas
- be
- bg
- bn
- br
- ca
- ckb
- cnh
- cs
- cv
- cy
- da
- de
- dv
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- fy-NL
- ga-IE
- gl
- gn
- ha
- hi
- hsb
- hu
- hy-AM
- ia
- id
- ig
- it
- ja
- ka
- kab
- kk
- kmr
- ky
- lg
- lt
- lv
- mdf
- mhr
- mk
- ml
- mn
- mr
- mrj
- mt
- myv
- nan-tw
- ne-NP
- nl
- nn-NO
- or
- pa-IN
- pl
- pt
- rm-sursilv
- rm-vallader
- ro
- ru
- rw
- sah
- sat
- sc
- sk
- skr
- sl
- sr
- sv-SE
- sw
- ta
- th
- ti
- tig
- tok
- tr
- tt
- tw
- ug
- uk
- ur
- uz
- vi
- vot
- yue
- zh-CN
- zh-HK
- zh-TW
extra_gated_prompt: By clicking on “Access repository” below, you also agree to not
  attempt to determine the identity of speakers in the Common Voice dataset.
---

# Dataset Card for Common Voice Corpus 11.0

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://commonvoice.mozilla.org/en/datasets
- **Repository:** https://github.com/common-voice/common-voice
- **Paper:** https://arxiv.org/abs/1912.06670
- **Leaderboard:** https://paperswithcode.com/dataset/common-voice
- **Point of Contact:** [Anton Lozhkov](mailto:[email protected])

### Dataset Summary

The Common Voice dataset consists of a unique MP3 and corresponding text file. 
Many of the 24210 recorded hours in the dataset also include demographic metadata like age, sex, and accent 
that can help improve the accuracy of speech recognition engines.

The dataset currently consists of 16413 validated hours in 100 languages, but more voices and languages are always added. 
Take a look at the [Languages](https://commonvoice.mozilla.org/en/languages) page to request a language or start contributing.

### Supported Tasks and Leaderboards

The results for models trained on the Common Voice datasets are available via the 
[🤗 Autoevaluate Leaderboard](https://huggingface.co/spaces/autoevaluate/leaderboards?dataset=mozilla-foundation%2Fcommon_voice_11_0&only_verified=0&task=automatic-speech-recognition&config=ar&split=test&metric=wer)

### Languages

```
Abkhaz, Arabic, Armenian, Assamese, Asturian, Azerbaijani, Basaa, Bashkir, Basque, Belarusian, Bengali, Breton, Bulgarian, Cantonese, Catalan, Central Kurdish, Chinese (China), Chinese (Hong Kong), Chinese (Taiwan), Chuvash, Czech, Danish, Dhivehi, Dutch, English, Erzya, Esperanto, Estonian, Finnish, French, Frisian, Galician, Georgian, German, Greek, Guarani, Hakha Chin, Hausa, Hill Mari, Hindi, Hungarian, Igbo, Indonesian, Interlingua, Irish, Italian, Japanese, Kabyle, Kazakh, Kinyarwanda, Kurmanji Kurdish, Kyrgyz, Latvian, Lithuanian, Luganda, Macedonian, Malayalam, Maltese, Marathi, Meadow Mari, Moksha, Mongolian, Nepali, Norwegian Nynorsk, Odia, Persian, Polish, Portuguese, Punjabi, Romanian, Romansh Sursilvan, Romansh Vallader, Russian, Sakha, Santali (Ol Chiki), Saraiki, Sardinian, Serbian, Slovak, Slovenian, Sorbian, Upper, Spanish, Swahili, Swedish, Taiwanese (Minnan), Tamil, Tatar, Thai, Tigre, Tigrinya, Toki Pona, Turkish, Twi, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Votic, Welsh
```

### How to use

The `datasets` library allows you to load and pre-process your dataset in pure Python at scale. No need to rely on decades old hacky shell scripts and C/C++ pre-processing scripts anymore. The minimalistic API ensure that you can plug-and-play this dataset in your existing Machine Learning workflow with just a few lines of code.

The entire dataset (or a particular split) can be downloaded and prepared in one call to your local drive by using the `load_dataset` function. To download the Hindi split, simply specify the corresponding dataset config name:
```python
from datasets import load_dataset

cv_11 = load_dataset("mozilla-foundation/common_voice_11_0", "hi", split="train")
```

Using the datasets library, you can also stream the dataset on-the-fly by adding a `streaming=True` argument to the `load_dataset` function call. Loading a dataset in streaming mode loads individual samples of the dataset at a time, rather than downloading the entire dataset to disk.
```python
from datasets import load_dataset

cv_11 = load_dataset("mozilla-foundation/common_voice_11_0", "hi", split="train", streaming=True)

print(next(iter(cv_11)))
```

*Bonus*: create a [PyTorch dataloader](https://huggingface.co/docs/datasets/use_with_pytorch) directly with your local/ streaming datasets.
```python
from datasets import load_dataset
from torch.utils.data.sampler import BatchSampler, RandomSampler

cv_11 = load_dataset("mozilla-foundation/common_voice_11_0", "hi", split="train")
batch_sampler = BatchSampler(RandomSampler(cv_11), batch_size=32, drop_last=False)
dataloader = DataLoader(cv_11, batch_sampler=batch_sampler)
```

ofcourse, you can also create a dataloader with streaming datasets as well.
```python
from datasets import load_dataset
from torch.utils.data import DataLoader

cv_11 = load_dataset("mozilla-foundation/common_voice_11_0", "hi", split="train")
dataloader = DataLoader(cv_11, batch_size=32)
```

To find out more about loading and preparing audio datasets, head over to [hf.coblog/audio-datasets](https://huggingface.co/blog/audio-datasets).

### Example scripts

Train your own CTC or Seq2Seq Automatic Speech Recognition models on Common Voice 11 with `transformers` - [here](https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-recognition).

## Dataset Structure

### Data Instances

A typical data point comprises the `path` to the audio file and its `sentence`. 
Additional fields include `accent`, `age`, `client_id`, `up_votes`, `down_votes`, `gender`, `locale` and `segment`.

```python
{
  'client_id': 'd59478fbc1ee646a28a3c652a119379939123784d99131b865a89f8b21c81f69276c48bd574b81267d9d1a77b83b43e6d475a6cfc79c232ddbca946ae9c7afc5', 
  'path': 'et/clips/common_voice_et_18318995.mp3', 
  'audio': {
    'path': 'et/clips/common_voice_et_18318995.mp3', 
    'array': array([-0.00048828, -0.00018311, -0.00137329, ...,  0.00079346, 0.00091553,  0.00085449], dtype=float32), 
    'sampling_rate': 48000
  }, 
  'sentence': 'Tasub kokku saada inimestega, keda tunned juba ammust ajast saati.', 
  'up_votes': 2, 
  'down_votes': 0, 
  'age': 'twenties', 
  'gender': 'male', 
  'accent': '', 
  'locale': 'et', 
  'segment': ''
}
```

### Data Fields

`client_id` (`string`): An id for which client (voice) made the recording

`path` (`string`): The path to the audio file

`audio` (`dict`): A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.

`sentence` (`string`): The sentence the user was prompted to speak

`up_votes` (`int64`): How many upvotes the audio file has received from reviewers

`down_votes` (`int64`): How many downvotes the audio file has received from reviewers

`age` (`string`): The age of the speaker (e.g. `teens`, `twenties`, `fifties`)

`gender` (`string`): The gender of the speaker

`accent` (`string`): Accent of the speaker

`locale` (`string`): The locale of the speaker

`segment` (`string`): Usually an empty field

### Data Splits

The speech material has been subdivided into portions for dev, train, test, validated, invalidated, reported and other.

The validated data is data that has been validated with reviewers and received upvotes that the data is of high quality.

The invalidated data is data has been invalidated by reviewers
and received downvotes indicating that the data is of low quality.

The reported data is data that has been reported, for different reasons.

The other data is data that has not yet been reviewed.

The dev, test, train are all data that has been reviewed, deemed of high quality and split into dev, test and train.

## Data Preprocessing Recommended by Hugging Face

The following are data preprocessing steps advised by the Hugging Face team. They are accompanied by an example code snippet that shows how to put them to practice. 

Many examples in this dataset have trailing quotations marks, e.g _“the cat sat on the mat.“_. These trailing quotation marks do not change the actual meaning of the sentence, and it is near impossible to infer whether a sentence is a quotation or not a quotation from audio data alone. In these cases, it is advised to strip the quotation marks, leaving: _the cat sat on the mat_.

In addition, the majority of training sentences end in punctuation ( . or ? or ! ), whereas just a small proportion do not. In the dev set, **almost all** sentences end in punctuation. Thus, it is recommended to append a full-stop ( . ) to the end of the small number of training examples that do not end in punctuation.

```python
from datasets import load_dataset

ds = load_dataset("mozilla-foundation/common_voice_11_0", "en", use_auth_token=True)

def prepare_dataset(batch):
  """Function to preprocess the dataset with the .map method"""
  transcription = batch["sentence"]
  
  if transcription.startswith('"') and transcription.endswith('"'):
    # we can remove trailing quotation marks as they do not affect the transcription
    transcription = transcription[1:-1]
  
  if transcription[-1] not in [".", "?", "!"]:
    # append a full-stop to sentences that do not end in punctuation
    transcription = transcription + "."
  
  batch["sentence"] = transcription
  
  return batch

ds = ds.map(prepare_dataset, desc="preprocess dataset")
```

## Dataset Creation

### Curation Rationale

[Needs More Information]

### Source Data

#### Initial Data Collection and Normalization

[Needs More Information]

#### Who are the source language producers?

[Needs More Information]

### Annotations

#### Annotation process

[Needs More Information]

#### Who are the annotators?

[Needs More Information]

### Personal and Sensitive Information

The dataset consists of people who have donated their voice online.  You agree to not attempt to determine the identity of speakers in the Common Voice dataset.

## Considerations for Using the Data

### Social Impact of Dataset

The dataset consists of people who have donated their voice online.  You agree to not attempt to determine the identity of speakers in the Common Voice dataset.

### Discussion of Biases

[More Information Needed] 

### Other Known Limitations

[More Information Needed] 

## Additional Information

### Dataset Curators

[More Information Needed] 

### Licensing Information

Public Domain, [CC-0](https://creativecommons.org/share-your-work/public-domain/cc0/)

### Citation Information

```
@inproceedings{commonvoice:2020,
  author = {Ardila, R. and Branson, M. and Davis, K. and Henretty, M. and Kohler, M. and Meyer, J. and Morais, R. and Saunders, L. and Tyers, F. M. and Weber, G.},
  title = {Common Voice: A Massively-Multilingual Speech Corpus},
  booktitle = {Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)},
  pages = {4211--4215},
  year = 2020
}
```