Datasets:

Modalities:
Audio
Text
ArXiv:
Libraries:
Datasets
License:
polinaeterna HF staff reach-vb HF staff commited on
Commit
ed0e33e
·
1 Parent(s): 956a35c
Files changed (1) hide show
  1. README.md +50 -1
README.md CHANGED
@@ -366,7 +366,7 @@ Take a look at the [Languages](https://commonvoice.mozilla.org/en/languages) pag
366
  ### Supported Tasks and Leaderboards
367
 
368
  The results for models trained on the Common Voice datasets are available via the
369
- [🤗 Speech Bench](https://huggingface.co/spaces/huggingface/hf-speech-bench)
370
 
371
  ### Languages
372
 
@@ -374,6 +374,55 @@ The results for models trained on the Common Voice datasets are available via th
374
  Abkhaz, Arabic, Armenian, Assamese, Asturian, Azerbaijani, Basaa, Bashkir, Basque, Belarusian, Bengali, Breton, Bulgarian, Cantonese, Catalan, Central Kurdish, Chinese (China), Chinese (Hong Kong), Chinese (Taiwan), Chuvash, Czech, Danish, Dhivehi, Dutch, English, Erzya, Esperanto, Estonian, Finnish, French, Frisian, Galician, Georgian, German, Greek, Guarani, Hakha Chin, Hausa, Hill Mari, Hindi, Hungarian, Igbo, Indonesian, Interlingua, Irish, Italian, Japanese, Kabyle, Kazakh, Kinyarwanda, Kurmanji Kurdish, Kyrgyz, Latvian, Lithuanian, Luganda, Macedonian, Malayalam, Maltese, Marathi, Meadow Mari, Moksha, Mongolian, Nepali, Norwegian Nynorsk, Odia, Persian, Polish, Portuguese, Punjabi, Romanian, Romansh Sursilvan, Romansh Vallader, Russian, Sakha, Santali (Ol Chiki), Saraiki, Sardinian, Serbian, Slovak, Slovenian, Sorbian, Upper, Spanish, Swahili, Swedish, Taiwanese (Minnan), Tamil, Tatar, Thai, Tigre, Tigrinya, Toki Pona, Turkish, Twi, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Votic, Welsh
375
  ```
376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
377
  ## Dataset Structure
378
 
379
  ### Data Instances
 
366
  ### Supported Tasks and Leaderboards
367
 
368
  The results for models trained on the Common Voice datasets are available via the
369
+ [🤗 Autoevaluate Leaderboard](https://huggingface.co/spaces/autoevaluate/leaderboards?dataset=mozilla-foundation%2Fcommon_voice_11_0&only_verified=0&task=automatic-speech-recognition&config=ar&split=test&metric=wer)
370
 
371
  ### Languages
372
 
 
374
  Abkhaz, Arabic, Armenian, Assamese, Asturian, Azerbaijani, Basaa, Bashkir, Basque, Belarusian, Bengali, Breton, Bulgarian, Cantonese, Catalan, Central Kurdish, Chinese (China), Chinese (Hong Kong), Chinese (Taiwan), Chuvash, Czech, Danish, Dhivehi, Dutch, English, Erzya, Esperanto, Estonian, Finnish, French, Frisian, Galician, Georgian, German, Greek, Guarani, Hakha Chin, Hausa, Hill Mari, Hindi, Hungarian, Igbo, Indonesian, Interlingua, Irish, Italian, Japanese, Kabyle, Kazakh, Kinyarwanda, Kurmanji Kurdish, Kyrgyz, Latvian, Lithuanian, Luganda, Macedonian, Malayalam, Maltese, Marathi, Meadow Mari, Moksha, Mongolian, Nepali, Norwegian Nynorsk, Odia, Persian, Polish, Portuguese, Punjabi, Romanian, Romansh Sursilvan, Romansh Vallader, Russian, Sakha, Santali (Ol Chiki), Saraiki, Sardinian, Serbian, Slovak, Slovenian, Sorbian, Upper, Spanish, Swahili, Swedish, Taiwanese (Minnan), Tamil, Tatar, Thai, Tigre, Tigrinya, Toki Pona, Turkish, Twi, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Votic, Welsh
375
  ```
376
 
377
+ ### How to use
378
+
379
+ The `datasets` library allows you to load and pre-process your dataset in pure Python, at scale. The dataset can be downloaded and prepared in one call to your local drive by using the `load_dataset` function.
380
+
381
+ For example, to download the Hindi config, simply specify the corresponding language config name (i.e., "hi" for Hindi):
382
+ ```python
383
+ from datasets import load_dataset
384
+
385
+ cv_11 = load_dataset("mozilla-foundation/common_voice_11_0", "hi", split="train")
386
+ ```
387
+
388
+ Using the datasets library, you can also stream the dataset on-the-fly by adding a `streaming=True` argument to the `load_dataset` function call. Loading a dataset in streaming mode loads individual samples of the dataset at a time, rather than downloading the entire dataset to disk.
389
+ ```python
390
+ from datasets import load_dataset
391
+
392
+ cv_11 = load_dataset("mozilla-foundation/common_voice_11_0", "hi", split="train", streaming=True)
393
+
394
+ print(next(iter(cv_11)))
395
+ ```
396
+
397
+ *Bonus*: create a [PyTorch dataloader](https://huggingface.co/docs/datasets/use_with_pytorch) directly with your own datasets (local/streamed).
398
+
399
+ Local:
400
+
401
+ ```python
402
+ from datasets import load_dataset
403
+ from torch.utils.data.sampler import BatchSampler, RandomSampler
404
+
405
+ cv_11 = load_dataset("mozilla-foundation/common_voice_11_0", "hi", split="train")
406
+ batch_sampler = BatchSampler(RandomSampler(cv_11), batch_size=32, drop_last=False)
407
+ dataloader = DataLoader(cv_11, batch_sampler=batch_sampler)
408
+ ```
409
+
410
+ Streaming:
411
+
412
+ ```python
413
+ from datasets import load_dataset
414
+ from torch.utils.data import DataLoader
415
+
416
+ cv_11 = load_dataset("mozilla-foundation/common_voice_11_0", "hi", split="train")
417
+ dataloader = DataLoader(cv_11, batch_size=32)
418
+ ```
419
+
420
+ To find out more about loading and preparing audio datasets, head over to [hf.co/blog/audio-datasets](https://huggingface.co/blog/audio-datasets).
421
+
422
+ ### Example scripts
423
+
424
+ Train your own CTC or Seq2Seq Automatic Speech Recognition models on Common Voice 11 with `transformers` - [here](https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-recognition).
425
+
426
  ## Dataset Structure
427
 
428
  ### Data Instances