|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""The General Language Understanding Evaluation (GLUE) benchmark.""" |
|
|
|
|
|
import json |
|
import textwrap |
|
|
|
import datasets |
|
|
|
|
|
_XGLUE_CITATION = """\ |
|
@article{Liang2020XGLUEAN, |
|
title={XGLUE: A New Benchmark Dataset for Cross-lingual Pre-training, Understanding and Generation}, |
|
author={Yaobo Liang and Nan Duan and Yeyun Gong and Ning Wu and Fenfei Guo and Weizhen Qi |
|
and Ming Gong and Linjun Shou and Daxin Jiang and Guihong Cao and Xiaodong Fan and Ruofei |
|
Zhang and Rahul Agrawal and Edward Cui and Sining Wei and Taroon Bharti and Ying Qiao |
|
and Jiun-Hung Chen and Winnie Wu and Shuguang Liu and Fan Yang and Daniel Campos |
|
and Rangan Majumder and Ming Zhou}, |
|
journal={arXiv}, |
|
year={2020}, |
|
volume={abs/2004.01401} |
|
} |
|
""" |
|
|
|
_XGLUE_DESCRIPTION = """\ |
|
XGLUE is a new benchmark dataset to evaluate the performance of cross-lingual pre-trained |
|
models with respect to cross-lingual natural language understanding and generation. |
|
The benchmark is composed of the following 11 tasks: |
|
- NER |
|
- POS Tagging (POS) |
|
- News Classification (NC) |
|
- MLQA |
|
- XNLI |
|
- PAWS-X |
|
- Query-Ad Matching (QADSM) |
|
- Web Page Ranking (WPR) |
|
- QA Matching (QAM) |
|
- Question Generation (QG) |
|
- News Title Generation (NTG) |
|
|
|
For more information, please take a look at https://microsoft.github.io/XGLUE/. |
|
""" |
|
|
|
_XGLUE_ALL_DATA = "file:///Users/mihir/acl/test_model/xglue_full_dataset.tar.gz" |
|
|
|
_LANGUAGES = { |
|
"ner": ["en", "de", "es", "nl"], |
|
"pos": ["en", "de", "es", "nl", "bg", "el", "fr", "pl", "tr", "vi", "zh", "ur", "hi", "it", "ar", "ru", "th"], |
|
"mlqa": ["en", "de", "ar", "es", "hi", "vi", "zh"], |
|
"nc": ["en", "de", "es", "fr", "ru"], |
|
"xnli": ["en", "ar", "bg", "de", "el", "es", "fr", "hi", "ru", "sw", "th", "tr", "ur", "vi", "zh"], |
|
"paws-x": ["en", "de", "es", "fr"], |
|
"qadsm": ["en", "de", "fr"], |
|
"wpr": ["en", "de", "es", "fr", "it", "pt", "zh"], |
|
"qam": ["en", "de", "fr"], |
|
"qg": ["en", "de", "es", "fr", "it", "pt"], |
|
"ntg": ["en", "de", "es", "fr", "ru"], |
|
} |
|
|
|
_PATHS = { |
|
"mlqa": { |
|
"train": "squad1.1/train-v1.1.json", |
|
"dev": "MLQA_V1/dev/dev-context-{0}-question-{0}.json", |
|
"test": "MLQA_V1/test/test-context-{0}-question-{0}.json", |
|
}, |
|
"xnli": {"train": "multinli.train.en.tsv", "dev": "{}.dev", "test": "{}.test"}, |
|
"paws-x": { |
|
"train": "en/train.tsv", |
|
"dev": "{}/dev_2k.tsv", |
|
"test": "{}/test_2k.tsv", |
|
}, |
|
} |
|
for name in ["ner", "pos"]: |
|
_PATHS[name] = {"train": "en.train", "dev": "{}.dev", "test": "{}.test"} |
|
for name in ["nc", "qadsm", "wpr", "qam"]: |
|
_PATHS[name] = { |
|
"train": "xglue." + name + ".en.train", |
|
"dev": "xglue." + name + ".{}.dev", |
|
"test": "xglue." + name + ".{}.test", |
|
} |
|
for name in ["qg", "ntg"]: |
|
_PATHS[name] = {"train": "xglue." + name + ".en", "dev": "xglue." + name + ".{}", "test": "xglue." + name + ".{}"} |
|
|
|
|
|
class XGlueConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for XGLUE.""" |
|
|
|
def __init__( |
|
self, |
|
data_dir, |
|
citation, |
|
url, |
|
**kwargs, |
|
): |
|
"""BuilderConfig for XGLUE. |
|
|
|
Args: |
|
data_dir: `string`, the path to the folder containing the files in the |
|
downloaded .tar |
|
citation: `string`, citation for the data set |
|
url: `string`, url for information about the data set |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(XGlueConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) |
|
self.data_dir = data_dir |
|
self.citation = citation |
|
self.url = url |
|
|
|
|
|
class XGlue(datasets.GeneratorBasedBuilder): |
|
"""The Cross-lingual Pre-training, Understanding and Generation (XGlue) Benchmark.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
XGlueConfig( |
|
name="ner", |
|
description=textwrap.dedent( |
|
"""\ |
|
The shared task of CoNLL-2003 concerns language-independent named entity recognition. |
|
We will concentrate on four types of named entities: |
|
persons, locations, organizations and names of miscellaneous entities |
|
that do not belong to the previous three groups. |
|
""" |
|
), |
|
data_dir="NER", |
|
citation=textwrap.dedent( |
|
"""\ |
|
@article{Sang2003IntroductionTT, |
|
title={Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition}, |
|
author={Erik F. Tjong Kim Sang and Fien De Meulder}, |
|
journal={ArXiv}, |
|
year={2003}, |
|
volume={cs.CL/0306050} |
|
}, |
|
@article{Sang2002IntroductionTT, |
|
title={Introduction to the CoNLL-2002 Shared Task: Language-Independent Named Entity Recognition}, |
|
author={Erik F. Tjong Kim Sang}, |
|
journal={ArXiv}, |
|
year={2002}, |
|
volume={cs.CL/0209010} |
|
}""" |
|
), |
|
url="https://www.clips.uantwerpen.be/conll2003/ner/", |
|
), |
|
XGlueConfig( |
|
name="pos", |
|
description=textwrap.dedent( |
|
"""\ |
|
Universal Dependencies (UD) is a project that is developing cross-linguistically consistent treebank |
|
annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual |
|
learning, and parsing research from a language typology perspective. The annotation scheme is based on an |
|
evolution of (universal) Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal |
|
part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets |
|
(Zeman, 2008). The general philosophy is to provide a universal inventory of categories and guidelines |
|
to facilitate consistent annotation of similar constructions across languages, while |
|
allowing language-specific extensions when necessary. |
|
""" |
|
), |
|
data_dir="POS", |
|
citation=textwrap.dedent( |
|
"""\ |
|
@misc{11234/1-3105, |
|
title={Universal Dependencies 2.5}, |
|
author={Zeman, Daniel and Nivre, Joakim and Abrams, Mitchell and Aepli, et al.}, |
|
url={http://hdl.handle.net/11234/1-3105}, |
|
note={{LINDAT}/{CLARIAH}-{CZ} digital library at the Institute of Formal and Applied Linguistics ({{\'U}FAL}), Faculty of Mathematics and Physics, Charles University}, |
|
copyright={Licence Universal Dependencies v2.5}, |
|
year={2019} |
|
}""" |
|
), |
|
url="https://universaldependencies.org/", |
|
), |
|
XGlueConfig( |
|
name="mlqa", |
|
description=textwrap.dedent( |
|
"""\ |
|
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering |
|
performance. MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages |
|
- English, Arabic, German, Spanish, Hindi, Vietnamese and Simplified Chinese. |
|
MLQA is highly parallel, with QA instances parallel between 4 different languages on average. |
|
""" |
|
), |
|
data_dir="MLQA", |
|
citation=textwrap.dedent( |
|
"""\ |
|
@article{Lewis2019MLQAEC, |
|
title={MLQA: Evaluating Cross-lingual Extractive Question Answering}, |
|
author={Patrick Lewis and Barlas Oguz and Ruty Rinott and Sebastian Riedel and Holger Schwenk}, |
|
journal={ArXiv}, |
|
year={2019}, |
|
volume={abs/1910.07475} |
|
}""" |
|
), |
|
url="https://github.com/facebookresearch/MLQA", |
|
), |
|
XGlueConfig( |
|
name="nc", |
|
description=textwrap.dedent( |
|
"""\ |
|
This task aims to predict the category given a news article. It covers |
|
5 languages, including English, Spanish, French, |
|
German and Russian. Each labeled instance is a |
|
3-tuple: <news title, news body, category>. The |
|
category number is 10. We crawl this dataset from |
|
a commercial news website. Accuracy (ACC) of |
|
the multi-class classification is used as the metric. |
|
""" |
|
), |
|
data_dir="NC", |
|
citation="", |
|
url="", |
|
), |
|
XGlueConfig( |
|
name="xnli", |
|
description=textwrap.dedent( |
|
"""\ |
|
XNLI is a subset of a few thousand examples from MNLI which has been translated |
|
into a 14 different languages (some low-ish resource). As with MNLI, the goal is |
|
to predict textual entailment (does sentence A imply/contradict/neither sentence |
|
B) and is a classification task (given two sentences, predict one of three |
|
labels). |
|
""" |
|
), |
|
data_dir="XNLI", |
|
citation=textwrap.dedent( |
|
"""\ |
|
@inproceedings{Conneau2018XNLIEC, |
|
title={XNLI: Evaluating Cross-lingual Sentence Representations}, |
|
author={Alexis Conneau and Guillaume Lample and Ruty Rinott and Adina Williams and Samuel R. Bowman and Holger Schwenk and Veselin Stoyanov}, |
|
booktitle={EMNLP}, |
|
year={2018} |
|
}""" |
|
), |
|
url="https://github.com/facebookresearch/XNLI", |
|
), |
|
XGlueConfig( |
|
name="paws-x", |
|
description=textwrap.dedent( |
|
"""\ |
|
PAWS-X contains 23,659 human translated PAWS (Paraphrase Adversaries from Word Scrambling) evaluation pairs and 296,406 machine translated training pairs in six typologically distinct languages: French, Spanish, German, Chinese, Japanese, and Korean. All translated pairs are sourced from examples in PAWS-Wiki. |
|
""" |
|
), |
|
data_dir="PAWSX", |
|
citation=textwrap.dedent( |
|
"""\ |
|
@article{Yang2019PAWSXAC, |
|
title={PAWS-X: A Cross-lingual Adversarial Dataset for Paraphrase Identification}, |
|
author={Yinfei Yang and Yuan Zhang and Chris Tar and Jason Baldridge}, |
|
journal={ArXiv}, |
|
year={2019}, |
|
volume={abs/1908.11828} |
|
}""" |
|
), |
|
url="https://github.com/google-research-datasets/paws/tree/master/pawsx", |
|
), |
|
XGlueConfig( |
|
name="qadsm", |
|
description=textwrap.dedent( |
|
"""\ |
|
Query-Ad Matching (QADSM) task aims |
|
to predict whether an advertisement (ad) is relevant to an input query. It covers 3 languages, including English, French and German. Each labeled instance is a 4-tuple: <query, ad title, ad description, label>. The label indicates whether the |
|
ad is relevant to the query (Good), or not (Bad). |
|
This dataset was constructed based on a commercial search engine. Accuracy (ACC) of the binary classification should be used as the metric. |
|
""" |
|
), |
|
data_dir="QADSM", |
|
citation="", |
|
url="", |
|
), |
|
XGlueConfig( |
|
name="wpr", |
|
description=textwrap.dedent( |
|
"""\ |
|
Tthe Web Page Ranking (WPR) task aims to |
|
predict whether a web page is relevant to an input query. It covers 7 languages, including English, German, French, Spanish, Italian, Portuguese and Chinese. Each labeled instance is a |
|
4-tuple: <query, web page title, web page snippet, label>. The relevance label contains 5 ratings: Perfect (4), Excellent (3), Good (2), Fair (1) |
|
and Bad (0). The dataset is constructed based on a |
|
commercial search engine. Normalize Discounted |
|
Cumulative Gain (nDCG) should be used as the metric. |
|
""" |
|
), |
|
data_dir="WPR", |
|
citation="", |
|
url="", |
|
), |
|
XGlueConfig( |
|
name="qam", |
|
description=textwrap.dedent( |
|
"""\ |
|
The QA Matching (QAM) task aims to predict whether a <question, passage> pair is a QA pair. |
|
It covers 3 languages, including English, French |
|
and German. Each labeled instance is a 3-tuple: |
|
<question, passage, label>. The label indicates |
|
whether the passage is the answer of the question |
|
(1), or not (0). This dataset is constructed based on |
|
a commercial search engine. Accuracy (ACC) of |
|
the binary classification should be used as the metric. |
|
""" |
|
), |
|
data_dir="QAM", |
|
citation="", |
|
url="", |
|
), |
|
XGlueConfig( |
|
name="qg", |
|
description=textwrap.dedent( |
|
"""\ |
|
The Question Generation (QG) task aims to |
|
generate a question for a given passage. <passage, question> pairs were collected from a commercial search engine. It covers 6 languages, including English, French, German, Spanish, Italian and |
|
Portuguese. BLEU-4 score should be used as the metric. |
|
""" |
|
), |
|
data_dir="QG", |
|
citation="", |
|
url="", |
|
), |
|
XGlueConfig( |
|
name="ntg", |
|
description=textwrap.dedent( |
|
"""\ |
|
News Title Generation (NTG) task aims |
|
to generate a proper title for a given news body. |
|
We collect <news body, news title> pairs from a |
|
commercial news website. It covers 5 languages, |
|
including German, English, French, Spanish and |
|
Russian. BLEU-4 score should be used as the metric. |
|
""" |
|
), |
|
data_dir="NTG", |
|
citation="", |
|
url="", |
|
), |
|
] |
|
|
|
def _info(self): |
|
if self.config.name == "ner": |
|
features = { |
|
"words": datasets.Sequence(datasets.Value("string")), |
|
"ner": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
"O", |
|
"B-PER", |
|
"I-PER", |
|
"B-ORG", |
|
"I-ORG", |
|
"B-LOC", |
|
"I-LOC", |
|
"B-MISC", |
|
"I-MISC", |
|
] |
|
) |
|
), |
|
} |
|
elif self.config.name == "pos": |
|
features = { |
|
"words": datasets.Sequence(datasets.Value("string")), |
|
"pos": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
"ADJ", |
|
"ADP", |
|
"ADV", |
|
"AUX", |
|
"CCONJ", |
|
"DET", |
|
"INTJ", |
|
"NOUN", |
|
"NUM", |
|
"PART", |
|
"PRON", |
|
"PROPN", |
|
"PUNCT", |
|
"SCONJ", |
|
"SYM", |
|
"VERB", |
|
"X", |
|
] |
|
) |
|
), |
|
} |
|
elif self.config.name == "mlqa": |
|
features = { |
|
"context": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answers": datasets.features.Sequence( |
|
{"answer_start": datasets.Value("int32"), "text": datasets.Value("string")} |
|
), |
|
|
|
} |
|
elif self.config.name == "nc": |
|
features = { |
|
"news_title": datasets.Value("string"), |
|
"news_body": datasets.Value("string"), |
|
"news_category": datasets.ClassLabel( |
|
names=[ |
|
"foodanddrink", |
|
"sports", |
|
"travel", |
|
"finance", |
|
"lifestyle", |
|
"news", |
|
"entertainment", |
|
"health", |
|
"video", |
|
"autos", |
|
] |
|
), |
|
} |
|
elif self.config.name == "xnli": |
|
features = { |
|
"premise": datasets.Value("string"), |
|
"hypothesis": datasets.Value("string"), |
|
"label": datasets.features.ClassLabel(names=["entailment", "neutral", "contradiction"]), |
|
} |
|
elif self.config.name == "paws-x": |
|
features = { |
|
"sentence1": datasets.Value("string"), |
|
"sentence2": datasets.Value("string"), |
|
"label": datasets.features.ClassLabel(names=["different", "same"]), |
|
} |
|
elif self.config.name == "qadsm": |
|
features = { |
|
"query": datasets.Value("string"), |
|
"ad_title": datasets.Value("string"), |
|
"ad_description": datasets.Value("string"), |
|
"relevance_label": datasets.features.ClassLabel(names=["Bad", "Good"]), |
|
} |
|
elif self.config.name == "wpr": |
|
features = { |
|
"query": datasets.Value("string"), |
|
"web_page_title": datasets.Value("string"), |
|
"web_page_snippet": datasets.Value("string"), |
|
"relavance_label": datasets.features.ClassLabel(names=["Bad", "Fair", "Good", "Excellent", "Perfect"]), |
|
} |
|
elif self.config.name == "qam": |
|
features = { |
|
"question": datasets.Value("string"), |
|
"answer": datasets.Value("string"), |
|
"label": datasets.features.ClassLabel(names=["False", "True"]), |
|
} |
|
elif self.config.name == "qg": |
|
features = { |
|
"answer_passage": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
} |
|
elif self.config.name == "ntg": |
|
features = { |
|
"news_body": datasets.Value("string"), |
|
"news_title": datasets.Value("string"), |
|
} |
|
|
|
return datasets.DatasetInfo( |
|
description=_XGLUE_DESCRIPTION, |
|
features=datasets.Features(features), |
|
homepage=self.config.url, |
|
citation=self.config.citation + "\n" + _XGLUE_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
archive = dl_manager.download(_XGLUE_ALL_DATA) |
|
data_folder = f"xglue_full_dataset/{self.config.data_dir}" |
|
name = self.config.name |
|
|
|
languages = _LANGUAGES[name] |
|
return ( |
|
[ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"archive": dl_manager.iter_archive(archive), |
|
"data_path": f"{data_folder}/{_PATHS[name]['train']}", |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
+ [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split(f"validation.{lang}"), |
|
gen_kwargs={ |
|
"archive": dl_manager.iter_archive(archive), |
|
"data_path": f"{data_folder}/{_PATHS[name]['dev'].format(lang)}", |
|
"split": "dev", |
|
}, |
|
) |
|
for lang in languages |
|
] |
|
+ [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split(f"test.{lang}"), |
|
gen_kwargs={ |
|
"archive": dl_manager.iter_archive(archive), |
|
"data_path": f"{data_folder}/{_PATHS[name]['test'].format(lang)}", |
|
"split": "test", |
|
}, |
|
) |
|
for lang in languages |
|
] |
|
) |
|
|
|
def _generate_examples(self, archive, data_path, split=None): |
|
keys = list(self._info().features.keys()) |
|
src_f = tgt_f = None |
|
for path, file in archive: |
|
if self.config.name == "mlqa": |
|
if path == data_path: |
|
data = json.load(file) |
|
for examples in data["data"]: |
|
for example in examples["paragraphs"]: |
|
context = example["context"] |
|
for qa in example["qas"]: |
|
question = qa["question"] |
|
id_ = qa["id"] |
|
answers = qa["answers"] |
|
answers_start = [answer["answer_start"] for answer in answers] |
|
answers_text = [answer["text"] for answer in answers] |
|
yield id_, { |
|
"context": context, |
|
"question": question, |
|
"answers": {"answer_start": answers_start, "text": answers_text}, |
|
} |
|
elif self.config.name in ["ner", "pos"]: |
|
if path == data_path: |
|
words = [] |
|
result = [] |
|
idx = -1 |
|
for line in file: |
|
line = line.decode("utf-8") |
|
if line.strip() == "": |
|
if len(words) > 0: |
|
out_dict = {keys[0]: words, keys[1]: result} |
|
words = [] |
|
result = [] |
|
idx += 1 |
|
yield idx, out_dict |
|
else: |
|
splits = line.strip().split(" ") |
|
words.append(splits[0]) |
|
result.append(splits[1]) |
|
elif self.config.name in ["ntg", "qg"]: |
|
if path == data_path + ".src." + split: |
|
src_f = [line.decode("utf-8") for line in file] |
|
elif path == data_path + ".tgt." + split: |
|
tgt_f = [line.decode("utf-8") for line in file] |
|
if src_f and tgt_f: |
|
for idx, (src_line, tgt_line) in enumerate(zip(src_f, tgt_f)): |
|
yield idx, {keys[0]: src_line.strip(), keys[1]: tgt_line.strip()} |
|
else: |
|
_process_dict = { |
|
"paws-x": {"0": "different", "1": "same"}, |
|
"xnli": {"contradictory": "contradiction"}, |
|
"qam": {"0": "False", "1": "True"}, |
|
"wpr": {"0": "Bad", "1": "Fair", "2": "Good", "3": "Excellent", "4": "Perfect"}, |
|
} |
|
|
|
def _process(value): |
|
if self.config.name in _process_dict and value in _process_dict[self.config.name]: |
|
return _process_dict[self.config.name][value] |
|
return value |
|
|
|
if path == data_path: |
|
for idx, line in enumerate(file): |
|
line = line.decode("utf-8") |
|
if data_path.split(".")[-1] == "tsv" and idx == 0: |
|
continue |
|
items = line.strip().split("\t") |
|
yield idx, { |
|
key: _process(value) |
|
for key, value in zip(keys, items[1:] if self.config.name == "paws-x" else items) |
|
} |
|
|
|
|