mstz commited on
Commit
606d239
·
1 Parent(s): 68b48f8

Upload 3 files

Browse files
Files changed (4) hide show
  1. .gitattributes +1 -0
  2. README.md +21 -1
  3. pums.csv +3 -0
  4. pums.py +132 -0
.gitattributes CHANGED
@@ -52,3 +52,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
52
  *.jpg filter=lfs diff=lfs merge=lfs -text
53
  *.jpeg filter=lfs diff=lfs merge=lfs -text
54
  *.webp filter=lfs diff=lfs merge=lfs -text
 
 
52
  *.jpg filter=lfs diff=lfs merge=lfs -text
53
  *.jpeg filter=lfs diff=lfs merge=lfs -text
54
  *.webp filter=lfs diff=lfs merge=lfs -text
55
+ pums.csv filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,23 @@
1
  ---
2
- license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - pums
6
+ - tabular_classification
7
+ - binary_classification
8
+ - UCI
9
+ pretty_name: Ipums
10
+ task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
11
+ - tabular-classification
12
+ configs:
13
+ - pums
14
  ---
15
+ # Pums
16
+ The [Pums dataset](https://archive-beta.ics.uci.edu/dataset/116/us+census+data+1990) from the [UCI repository](https://archive-beta.ics.uci.edu/).
17
+ U.S.A. Census dataset, classify the income of the individual.
18
+
19
+
20
+ # Configurations and tasks
21
+ | **Configuration** | **Task** |
22
+ |-----------------------|---------------------------|
23
+ | pums | Binary classification.|
pums.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6905c75708458f5a1a8809e19a5e3aae21549f964edbe06ebc6b1dab3e6aac6d
3
+ size 141527293
pums.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Pums Dataset"""
2
+
3
+ from typing import List
4
+ from functools import partial
5
+
6
+ import datasets
7
+
8
+ import pandas
9
+
10
+
11
+ VERSION = datasets.Version("1.0.0")
12
+
13
+ _ENCODING_DICS = {
14
+ "class": {
15
+ "- 50000.": 0,
16
+ "50000+.": 1
17
+ }
18
+ }
19
+
20
+ DESCRIPTION = "Pums dataset."
21
+ _HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/116/us+census+data+1990"
22
+ _URLS = ("https://archive-beta.ics.uci.edu/dataset/116/us+census+data+1990")
23
+ _CITATION = """
24
+ @misc{misc_us_census_data_(1990)_116,
25
+ author = {Meek,Meek, Thiesson,Thiesson & Heckerman,Heckerman},
26
+ title = {{US Census Data (1990)}},
27
+ howpublished = {UCI Machine Learning Repository},
28
+ note = {{DOI}: \\url{10.24432/C5VP42}}
29
+ }
30
+ """
31
+
32
+ # Dataset info
33
+ urls_per_split = {
34
+ "train": "https://huggingface.co/datasets/mstz/pums/resolve/main/pums.csv"
35
+ }
36
+ features_types_per_config = {
37
+ "pums": {
38
+ "age": datasets.Value("int64"),
39
+ "class_of_worker": datasets.Value("string"),
40
+ "detailed_industry_recode": datasets.Value("string"),
41
+ "detailed_occupation_recode": datasets.Value("string"),
42
+ "education": datasets.Value("string"),
43
+ "wage_per_hour": datasets.Value("int64"),
44
+ "enroll_in_edu_inst_last_wk": datasets.Value("string"),
45
+ "marital_stat": datasets.Value("string"),
46
+ "major_industry_code": datasets.Value("string"),
47
+ "major_occupation_code": datasets.Value("string"),
48
+ "race": datasets.Value("string"),
49
+ "hispanic_origin": datasets.Value("string"),
50
+ "sex": datasets.Value("string"),
51
+ "member_of_a_labor_union": datasets.Value("string"),
52
+ "reason_for_unemployment": datasets.Value("string"),
53
+ "full_or_part_time_employment_stat": datasets.Value("string"),
54
+ "capital_gains": datasets.Value("int64"),
55
+ "capital_losses": datasets.Value("int64"),
56
+ "dividends_from_stocks": datasets.Value("int64"),
57
+ "tax_filer_stat": datasets.Value("string"),
58
+ "region_of_previous_residence": datasets.Value("string"),
59
+ "state_of_previous_residence": datasets.Value("string"),
60
+ "detailed_household_and_family_stat": datasets.Value("string"),
61
+ "detailed_household_summary_in_household": datasets.Value("string"),
62
+ # "instance_weight": datasets.Value("int64"),
63
+ "migration_code_change_in_msa": datasets.Value("string"),
64
+ "migration_code_change_in_reg": datasets.Value("string"),
65
+ "migration_code_move_within_reg": datasets.Value("string"),
66
+ "live_in_this_house_1_year_ago": datasets.Value("string"),
67
+ "migration_prev_res_in_sunbelt": datasets.Value("string"),
68
+ "num_persons_worked_for_employer": datasets.Value("int64"),
69
+ "family_members_under_18": datasets.Value("string"),
70
+ "country_of_birth_father": datasets.Value("string"),
71
+ "country_of_birth_mother": datasets.Value("string"),
72
+ "country_of_birth_self": datasets.Value("string"),
73
+ "citizenship": datasets.Value("string"),
74
+ "own_business_or_self_employed": datasets.Value("string"),
75
+ "fill_inc_questionnaire_for_veteran_admin": datasets.Value("string"),
76
+ "veterans_benefits": datasets.Value("string"),
77
+ "weeks_worked_in_year": datasets.Value("int64"),
78
+ "year": datasets.Value("int64"),
79
+ "class": datasets.ClassLabel(num_classes=2)
80
+ }
81
+ }
82
+ features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
83
+
84
+
85
+ class PumsConfig(datasets.BuilderConfig):
86
+ def __init__(self, **kwargs):
87
+ super(PumsConfig, self).__init__(version=VERSION, **kwargs)
88
+ self.features = features_per_config[kwargs["name"]]
89
+
90
+
91
+ class Pums(datasets.GeneratorBasedBuilder):
92
+ # dataset versions
93
+ DEFAULT_CONFIG = "pums"
94
+ BUILDER_CONFIGS = [PumsConfig(name="pums", description="Pums for binary classification.")]
95
+
96
+
97
+ def _info(self):
98
+ info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
99
+ features=features_per_config[self.config.name])
100
+
101
+ return info
102
+
103
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
104
+ downloads = dl_manager.download_and_extract(urls_per_split)
105
+
106
+ return [
107
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
108
+ ]
109
+
110
+ def _generate_examples(self, filepath: str):
111
+ data = pandas.read_csv(filepath)
112
+ data = self.preprocess(data)
113
+
114
+ for row_id, row in data.iterrows():
115
+ data_row = dict(row)
116
+
117
+ yield row_id, data_row
118
+
119
+ def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
120
+ for feature in _ENCODING_DICS:
121
+ encoding_function = partial(self.encode, feature)
122
+ data.loc[:, feature] = data[feature].apply(encoding_function)
123
+
124
+ data.drop("instance_weight", axis="columns", inplace=True)
125
+ data = data.rename(columns={"instance migration_code_change_in_msa": "migration_code_change_in_msa"})
126
+
127
+ return data[list(features_types_per_config[self.config.name].keys())]
128
+
129
+ def encode(self, feature, value):
130
+ if feature in _ENCODING_DICS:
131
+ return _ENCODING_DICS[feature][value]
132
+ raise ValueError(f"Unknown feature: {feature}")