student_performance / student performance.py
mstz's picture
Upload 3 files
803974e
raw
history blame
6.47 kB
"""StudentPerformance Dataset"""
from typing import List
from functools import partial
import datasets
import pandas
VERSION = datasets.Version("1.0.0")
_BASE_FEATURE_NAMES = [
"sex",
"ethnicity",
"parental_level_of_education",
"has_standard_lunch",
"has_completed_preparation_test",
"math_score",
"reading_score",
"writing_score"
]
_ENCODING_DICS = {
"gender": {
"\"female\"": 0,
"\"male\"": 1
},
"parental_level_of_education": {
"some high school": 0,
"high school": 1,
"some college": 2,
"bachelor's degree": 3,
"master's degree": 4,
"associate's degree": 5,
},
"has_standard_lunch" : {
"free/reduced": 0,
"standard": 1
},
"has_completed_preparation_test": {
"none": 0,
"completed": 1
}
}
DESCRIPTION = "StudentPerformance dataset."
_HOMEPAGE = "https://www.kaggle.com/datasets/ulrikthygepedersen/student_performances"
_URLS = ("https://www.kaggle.com/datasets/ulrikthygepedersen/student_performances")
_CITATION = """"""
# Dataset info
urls_per_split = {
"train": "https://huggingface.co/datasets/mstz/student_performances/raw/main/student_performances.csv",
}
features_types_per_config = {
"encoding": {
"feature": datasets.Value("string"),
"original_value": datasets.Value("string"),
"encoded_value": datasets.Value("int64")
},
"math": {
"sex": datasets.Value("int8"),
"ethnicity": datasets.Value("string"),
"parental_level_of_education": datasets.Value("int8"),
"has_standard_lunch": datasets.Value("int8"),
"test_preparation_course": datasets.Value("string"),
"reading_score": datasets.Value("int64"),
"writing_score": datasets.Value("int64"),
"has_passed_math_exam": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
},
"writing": {
"sex": datasets.Value("int8"),
"ethnicity": datasets.Value("string"),
"parental_level_of_education": datasets.Value("int8"),
"has_standard_lunch": datasets.Value("int8"),
"test_preparation_course": datasets.Value("string"),
"reading_score": datasets.Value("int64"),
"math_score": datasets.Value("int64"),
"has_passed_writing_exam": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
},
"reading": {
"sex": datasets.Value("int8"),
"ethnicity": datasets.Value("string"),
"parental_level_of_education": datasets.Value("int8"),
"has_standard_lunch": datasets.Value("int8"),
"test_preparation_course": datasets.Value("string"),
"writing_score": datasets.Value("int64"),
"math_score": datasets.Value("int64"),
"has_passed_reading_exam": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
}
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
class StudentPerformanceConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(StudentPerformanceConfig, self).__init__(version=VERSION, **kwargs)
self.features = features_per_config[kwargs["name"]]
class StudentPerformance(datasets.GeneratorBasedBuilder):
# dataset versions
DEFAULT_CONFIG = "math"
BUILDER_CONFIGS = [
StudentPerformanceConfig(name="encoding",
description="Encoding dictionaries."),
StudentPerformanceConfig(name="math",
description="Binary classification, predict if the student has passed the math exam."),
StudentPerformanceConfig(name="reading",
description="Binary classification, predict if the student has passed the reading exam."),
StudentPerformanceConfig(name="writing",
description="Binary classification, predict if the student has passed the writing exam."),
]
def _info(self):
if self.config.name not in features_per_config:
raise ValueError(f"Unknown configuration: {self.config.name}")
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
features=features_per_config[self.config.name])
return info
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
downloads = dl_manager.download_and_extract(urls_per_split)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
]
def _generate_examples(self, filepath: str):
data = pandas.read_csv(filepath)
data = self.preprocess(data, config=self.config.name)
for row_id, row in data.iterrows():
data_row = dict(row)
yield row_id, data_row
def preprocess(self, data: pandas.DataFrame, config: str = "cut") -> pandas.DataFrame:
if config == "encoding":
return self.encoding_dics()
data.columns = [c.replace("\"", "") for c in data.columns]
data.loc[:, "race/ethnicity"] = data["race/ethnicity"].apply(lambda x: x.replace("group ", ""))
for feature in _ENCODING_DICS:
encoding_function = partial(self.encode, feature)
data.loc[:, feature] = data[feature].apply(encoding_function)
data.columns = _BASE_FEATURE_NAMES
if config == "math":
data = data.rename(colums={"math_score", "has_passed_math_exam"})
return data[list(features_types_per_config["math"].keys())]
elif config == "reading":
data = data.rename(colums={"reading_score", "has_passed_reading_exam"})
return data[list(features_types_per_config["reading"].keys())]
elif config == "writing":
data = data.rename(colums={"writing_score", "has_passed_writing_exam"})
return data[list(features_types_per_config["writing"].keys())]
else:
raise ValueError(f"Unknown config: {config}")
def encode(self, feature, value):
return _ENCODING_DICS[feature][value]
def encoding_dics(self):
data = [pandas.Dataframe([(feature, original, encoded) for original, encoded in d.items()])
for feature, d in _ENCODING_DICS.items()]
data = pandas.concat(data, axis="rows")
return data