|
"""StudentPerformance Dataset""" |
|
|
|
from typing import List |
|
from functools import partial |
|
|
|
import datasets |
|
|
|
import pandas |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
_BASE_FEATURE_NAMES = [ |
|
"sex", |
|
"ethnicity", |
|
"parental_level_of_education", |
|
"has_standard_lunch", |
|
"has_completed_preparation_test", |
|
"math_score", |
|
"reading_score", |
|
"writing_score" |
|
] |
|
|
|
_ENCODING_DICS = { |
|
"sex": { |
|
"female": 0, |
|
"male": 1 |
|
}, |
|
"parental_level_of_education": { |
|
"some high school": 0, |
|
"high school": 1, |
|
"some college": 2, |
|
"bachelor's degree": 3, |
|
"master's degree": 4, |
|
"associate's degree": 5, |
|
}, |
|
"has_standard_lunch" : { |
|
"free/reduced": 0, |
|
"standard": 1 |
|
}, |
|
"has_completed_preparation_test": { |
|
"none": 0, |
|
"completed": 1 |
|
} |
|
} |
|
|
|
DESCRIPTION = "StudentPerformance dataset." |
|
_HOMEPAGE = "https://www.kaggle.com/datasets/ulrikthygepedersen/student_performances" |
|
_URLS = ("https://www.kaggle.com/datasets/ulrikthygepedersen/student_performances") |
|
_CITATION = """""" |
|
|
|
|
|
urls_per_split = { |
|
"train": "https://huggingface.co/datasets/mstz/student_performance/raw/main/student_performance.csv", |
|
} |
|
features_types_per_config = { |
|
"encoding": { |
|
"feature": datasets.Value("string"), |
|
"original_value": datasets.Value("string"), |
|
"encoded_value": datasets.Value("int64") |
|
}, |
|
"math": { |
|
"is_male": datasets.Value("bool"), |
|
"ethnicity": datasets.Value("string"), |
|
"parental_level_of_education": datasets.Value("int8"), |
|
"has_standard_lunch": datasets.Value("bool"), |
|
"has_completed_preparation_test": datasets.Value("bool"), |
|
"reading_score": datasets.Value("int64"), |
|
"writing_score": datasets.Value("int64"), |
|
"has_passed_math_exam": datasets.ClassLabel(num_classes=2, names=("no", "yes")) |
|
}, |
|
"writing": { |
|
"is_male": datasets.Value("bool"), |
|
"ethnicity": datasets.Value("string"), |
|
"parental_level_of_education": datasets.Value("int8"), |
|
"has_standard_lunch": datasets.Value("bool"), |
|
"has_completed_preparation_test": datasets.Value("bool"), |
|
"reading_score": datasets.Value("int64"), |
|
"math_score": datasets.Value("int64"), |
|
"has_passed_writing_exam": datasets.ClassLabel(num_classes=2, names=("no", "yes")), |
|
}, |
|
"reading": { |
|
"is_male": datasets.Value("bool"), |
|
"ethnicity": datasets.Value("string"), |
|
"parental_level_of_education": datasets.Value("int8"), |
|
"has_standard_lunch": datasets.Value("bool"), |
|
"has_completed_preparation_test": datasets.Value("bool"), |
|
"writing_score": datasets.Value("int64"), |
|
"math_score": datasets.Value("int64"), |
|
"has_passed_reading_exam": datasets.ClassLabel(num_classes=2, names=("no", "yes")), |
|
} |
|
} |
|
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} |
|
|
|
|
|
class StudentPerformanceConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(StudentPerformanceConfig, self).__init__(version=VERSION, **kwargs) |
|
self.features = features_per_config[kwargs["name"]] |
|
|
|
|
|
class StudentPerformance(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG = "math" |
|
BUILDER_CONFIGS = [ |
|
StudentPerformanceConfig(name="encoding", |
|
description="Encoding dictionaries."), |
|
StudentPerformanceConfig(name="math", |
|
description="Binary classification, predict if the student has passed the math exam."), |
|
StudentPerformanceConfig(name="reading", |
|
description="Binary classification, predict if the student has passed the reading exam."), |
|
StudentPerformanceConfig(name="writing", |
|
description="Binary classification, predict if the student has passed the writing exam."), |
|
] |
|
|
|
|
|
def _info(self): |
|
if self.config.name not in features_per_config: |
|
raise ValueError(f"Unknown configuration: {self.config.name}") |
|
|
|
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, |
|
features=features_per_config[self.config.name]) |
|
|
|
return info |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
downloads = dl_manager.download_and_extract(urls_per_split) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath: str): |
|
if self.config.name not in features_types_per_config: |
|
raise ValueError(f"Unknown config: {self.config.name}") |
|
elif self.config.name == "encoding": |
|
data = self.encoding_dics() |
|
else: |
|
data = pandas.read_csv(filepath) |
|
data = self.preprocess(data, config=self.config.name) |
|
|
|
for row_id, row in data.iterrows(): |
|
data_row = dict(row) |
|
|
|
yield row_id, data_row |
|
|
|
def preprocess(self, data: pandas.DataFrame, config: str = "math") -> pandas.DataFrame: |
|
data.columns = _BASE_FEATURE_NAMES |
|
for feature in _ENCODING_DICS: |
|
encoding_function = partial(self.encode, feature) |
|
data.loc[:, feature] = data[feature].apply(encoding_function) |
|
data = data.rename(columns={"sex": "is_male"}) |
|
data = data.astype({"is_male": "bool", "has_standard_lunch": "bool", "has_completed_preparation_test": "bool"}) |
|
|
|
if config == "math": |
|
data = data.rename(columns={"math_score": "has_passed_math_exam"}) |
|
data.loc[:, "has_passed_math_exam"] = data.has_passed_math_exam.apply(lambda x: int(x > 60)) |
|
|
|
return data[list(features_types_per_config["math"].keys())] |
|
elif config == "reading": |
|
data = data.rename(columns={"reading_score": "has_passed_reading_exam"}) |
|
data.loc[:, "has_passed_reading_exam"] = data.has_passed_reading_exam.apply(lambda x: int(x > 60)) |
|
|
|
return data[list(features_types_per_config["reading"].keys())] |
|
elif config == "writing": |
|
data = data.rename(columns={"writing_score": "has_passed_writing_exam"}) |
|
data.loc[:, "has_passed_writing_exam"] = data.has_passed_writing_exam.apply(lambda x: int(x > 60)) |
|
|
|
return data[list(features_types_per_config["writing"].keys())] |
|
|
|
|
|
def encode(self, feature, value): |
|
return _ENCODING_DICS[feature][value] |
|
|
|
def encoding_dics(self): |
|
data = [pandas.DataFrame([(feature, original, encoded) for original, encoded in d.items()]) |
|
for feature, d in _ENCODING_DICS.items()] |
|
data = pandas.concat(data, axis="rows").reset_index() |
|
data.drop("index", axis="columns", inplace=True) |
|
data.columns = ["feature", "original_value", "encoded_value"] |
|
|
|
return data |
|
|