Datasets:
Upload student_performance.py
Browse files- student_performance.py +175 -0
student_performance.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""StudentPerformance Dataset"""
|
2 |
+
|
3 |
+
from typing import List
|
4 |
+
from functools import partial
|
5 |
+
|
6 |
+
import datasets
|
7 |
+
|
8 |
+
import pandas
|
9 |
+
|
10 |
+
|
11 |
+
VERSION = datasets.Version("1.0.0")
|
12 |
+
_BASE_FEATURE_NAMES = [
|
13 |
+
"sex",
|
14 |
+
"ethnicity",
|
15 |
+
"parental_level_of_education",
|
16 |
+
"has_standard_lunch",
|
17 |
+
"has_completed_preparation_test",
|
18 |
+
"math_score",
|
19 |
+
"reading_score",
|
20 |
+
"writing_score"
|
21 |
+
]
|
22 |
+
|
23 |
+
_ENCODING_DICS = {
|
24 |
+
"gender": {
|
25 |
+
"\"female\"": 0,
|
26 |
+
"\"male\"": 1
|
27 |
+
},
|
28 |
+
"parental_level_of_education": {
|
29 |
+
"some high school": 0,
|
30 |
+
"high school": 1,
|
31 |
+
"some college": 2,
|
32 |
+
"bachelor's degree": 3,
|
33 |
+
"master's degree": 4,
|
34 |
+
"associate's degree": 5,
|
35 |
+
},
|
36 |
+
"has_standard_lunch" : {
|
37 |
+
"free/reduced": 0,
|
38 |
+
"standard": 1
|
39 |
+
},
|
40 |
+
"has_completed_preparation_test": {
|
41 |
+
"none": 0,
|
42 |
+
"completed": 1
|
43 |
+
}
|
44 |
+
}
|
45 |
+
|
46 |
+
DESCRIPTION = "StudentPerformance dataset."
|
47 |
+
_HOMEPAGE = "https://www.kaggle.com/datasets/ulrikthygepedersen/student_performances"
|
48 |
+
_URLS = ("https://www.kaggle.com/datasets/ulrikthygepedersen/student_performances")
|
49 |
+
_CITATION = """"""
|
50 |
+
|
51 |
+
# Dataset info
|
52 |
+
urls_per_split = {
|
53 |
+
"train": "https://huggingface.co/datasets/mstz/student_performances/raw/main/student_performances.csv",
|
54 |
+
}
|
55 |
+
features_types_per_config = {
|
56 |
+
"encoding": {
|
57 |
+
"feature": datasets.Value("string"),
|
58 |
+
"original_value": datasets.Value("string"),
|
59 |
+
"encoded_value": datasets.Value("int64")
|
60 |
+
},
|
61 |
+
"math": {
|
62 |
+
"sex": datasets.Value("int8"),
|
63 |
+
"ethnicity": datasets.Value("string"),
|
64 |
+
"parental_level_of_education": datasets.Value("int8"),
|
65 |
+
"has_standard_lunch": datasets.Value("int8"),
|
66 |
+
"test_preparation_course": datasets.Value("string"),
|
67 |
+
"reading_score": datasets.Value("int64"),
|
68 |
+
"writing_score": datasets.Value("int64"),
|
69 |
+
"has_passed_math_exam": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
|
70 |
+
},
|
71 |
+
"writing": {
|
72 |
+
"sex": datasets.Value("int8"),
|
73 |
+
"ethnicity": datasets.Value("string"),
|
74 |
+
"parental_level_of_education": datasets.Value("int8"),
|
75 |
+
"has_standard_lunch": datasets.Value("int8"),
|
76 |
+
"test_preparation_course": datasets.Value("string"),
|
77 |
+
"reading_score": datasets.Value("int64"),
|
78 |
+
"math_score": datasets.Value("int64"),
|
79 |
+
"has_passed_writing_exam": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
|
80 |
+
},
|
81 |
+
"reading": {
|
82 |
+
"sex": datasets.Value("int8"),
|
83 |
+
"ethnicity": datasets.Value("string"),
|
84 |
+
"parental_level_of_education": datasets.Value("int8"),
|
85 |
+
"has_standard_lunch": datasets.Value("int8"),
|
86 |
+
"test_preparation_course": datasets.Value("string"),
|
87 |
+
"writing_score": datasets.Value("int64"),
|
88 |
+
"math_score": datasets.Value("int64"),
|
89 |
+
"has_passed_reading_exam": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
|
90 |
+
}
|
91 |
+
}
|
92 |
+
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
93 |
+
|
94 |
+
|
95 |
+
class StudentPerformanceConfig(datasets.BuilderConfig):
|
96 |
+
def __init__(self, **kwargs):
|
97 |
+
super(StudentPerformanceConfig, self).__init__(version=VERSION, **kwargs)
|
98 |
+
self.features = features_per_config[kwargs["name"]]
|
99 |
+
|
100 |
+
|
101 |
+
class StudentPerformance(datasets.GeneratorBasedBuilder):
|
102 |
+
# dataset versions
|
103 |
+
DEFAULT_CONFIG = "math"
|
104 |
+
BUILDER_CONFIGS = [
|
105 |
+
StudentPerformanceConfig(name="encoding",
|
106 |
+
description="Encoding dictionaries."),
|
107 |
+
StudentPerformanceConfig(name="math",
|
108 |
+
description="Binary classification, predict if the student has passed the math exam."),
|
109 |
+
StudentPerformanceConfig(name="reading",
|
110 |
+
description="Binary classification, predict if the student has passed the reading exam."),
|
111 |
+
StudentPerformanceConfig(name="writing",
|
112 |
+
description="Binary classification, predict if the student has passed the writing exam."),
|
113 |
+
]
|
114 |
+
|
115 |
+
|
116 |
+
def _info(self):
|
117 |
+
if self.config.name not in features_per_config:
|
118 |
+
raise ValueError(f"Unknown configuration: {self.config.name}")
|
119 |
+
|
120 |
+
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
|
121 |
+
features=features_per_config[self.config.name])
|
122 |
+
|
123 |
+
return info
|
124 |
+
|
125 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
126 |
+
downloads = dl_manager.download_and_extract(urls_per_split)
|
127 |
+
|
128 |
+
return [
|
129 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
|
130 |
+
]
|
131 |
+
|
132 |
+
def _generate_examples(self, filepath: str):
|
133 |
+
data = pandas.read_csv(filepath)
|
134 |
+
data = self.preprocess(data, config=self.config.name)
|
135 |
+
|
136 |
+
for row_id, row in data.iterrows():
|
137 |
+
data_row = dict(row)
|
138 |
+
|
139 |
+
yield row_id, data_row
|
140 |
+
|
141 |
+
def preprocess(self, data: pandas.DataFrame, config: str = "cut") -> pandas.DataFrame:
|
142 |
+
if config == "encoding":
|
143 |
+
return self.encoding_dics()
|
144 |
+
|
145 |
+
data.columns = [c.replace("\"", "") for c in data.columns]
|
146 |
+
|
147 |
+
data.loc[:, "race/ethnicity"] = data["race/ethnicity"].apply(lambda x: x.replace("group ", ""))
|
148 |
+
|
149 |
+
for feature in _ENCODING_DICS:
|
150 |
+
encoding_function = partial(self.encode, feature)
|
151 |
+
data.loc[:, feature] = data[feature].apply(encoding_function)
|
152 |
+
|
153 |
+
data.columns = _BASE_FEATURE_NAMES
|
154 |
+
|
155 |
+
if config == "math":
|
156 |
+
data = data.rename(colums={"math_score", "has_passed_math_exam"})
|
157 |
+
return data[list(features_types_per_config["math"].keys())]
|
158 |
+
elif config == "reading":
|
159 |
+
data = data.rename(colums={"reading_score", "has_passed_reading_exam"})
|
160 |
+
return data[list(features_types_per_config["reading"].keys())]
|
161 |
+
elif config == "writing":
|
162 |
+
data = data.rename(colums={"writing_score", "has_passed_writing_exam"})
|
163 |
+
return data[list(features_types_per_config["writing"].keys())]
|
164 |
+
else:
|
165 |
+
raise ValueError(f"Unknown config: {config}")
|
166 |
+
|
167 |
+
def encode(self, feature, value):
|
168 |
+
return _ENCODING_DICS[feature][value]
|
169 |
+
|
170 |
+
def encoding_dics(self):
|
171 |
+
data = [pandas.Dataframe([(feature, original, encoded) for original, encoded in d.items()])
|
172 |
+
for feature, d in _ENCODING_DICS.items()]
|
173 |
+
data = pandas.concat(data, axis="rows")
|
174 |
+
|
175 |
+
return data
|