|
"""Victorian.""" |
|
|
|
from typing import List |
|
from functools import partial |
|
|
|
import datasets |
|
|
|
import pandas |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
_ORIGINAL_FEATURE_NAMES = [ |
|
"text", |
|
"author" |
|
] |
|
_BASE_FEATURE_NAMES = [ |
|
"text", |
|
"author" |
|
] |
|
|
|
DESCRIPTION = "Victorian dataset from the Gungor thesis.\"." |
|
_HOMEPAGE = "https://scholarworks.iupui.edu/server/api/core/bitstreams/708a9870-915e-4d59-b54d-938af563c196/content" |
|
_URLS = ("https://scholarworks.iupui.edu/server/api/core/bitstreams/708a9870-915e-4d59-b54d-938af563c196/content") |
|
_CITATION = """ |
|
@phdthesis{gungor2018benchmarking, |
|
title={Benchmarking authorship attribution techniques using over a thousand books by fifty victorian era novelists}, |
|
author={Gungor, Abdulmecit}, |
|
year={2018}, |
|
school={Purdue University} |
|
}""" |
|
|
|
|
|
urls_per_split = { |
|
"train": "https://huggingface.co/datasets/mstz/victorian_authorship/resolve/main/train.csv", |
|
} |
|
features_types_per_config = { |
|
"authorship": { |
|
"text": datasets.Value("string"), |
|
"author": datasets.ClassLabel(num_classes=51) |
|
} |
|
} |
|
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} |
|
|
|
|
|
class VictorianConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(VictorianConfig, self).__init__(version=VERSION, **kwargs) |
|
self.features = features_per_config[kwargs["name"]] |
|
|
|
|
|
class Victorian(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG = "authorship" |
|
BUILDER_CONFIGS = [ |
|
VictorianConfig(name="authorship", |
|
description="authorship"), |
|
] |
|
|
|
|
|
def _info(self): |
|
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, |
|
features=features_per_config[self.config.name]) |
|
|
|
return info |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
downloads = dl_manager.download_and_extract(urls_per_split) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}) |
|
] |
|
|
|
def _generate_examples(self, filepath: str): |
|
print(f"reading {filepath}") |
|
data = pandas.read_csv(filepath, encoding="latin-1") |
|
print(data.columns) |
|
|
|
for row_id, row in data.iterrows(): |
|
data_row = dict(row) |
|
|
|
yield row_id, data_row |
|
|