mstz commited on
Commit
4064ceb
·
1 Parent(s): 4a1b90e

Delete waveform_noise.py

Browse files
Files changed (1) hide show
  1. waveform_noise.py +0 -104
waveform_noise.py DELETED
@@ -1,104 +0,0 @@
1
- """WaveformNoiseV1 Dataset"""
2
-
3
- from typing import List
4
- from functools import partial
5
-
6
- import datasets
7
-
8
- import pandas
9
-
10
-
11
- VERSION = datasets.Version("1.0.0")
12
-
13
- _ENCODING_DICS = {}
14
-
15
- DESCRIPTION = "WaveformNoiseV1 dataset."
16
- _HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/78/page+blocks+classification"
17
- _URLS = ("https://archive-beta.ics.uci.edu/dataset/78/page+blocks+classification")
18
- _CITATION = """
19
- @misc{misc_waveform_database_generator_(version_1)_107,
20
- author = {Breiman,L. & Stone,C.J.},
21
- title = {{Waveform Database Generator (Version 1)}},
22
- year = {1988},
23
- howpublished = {UCI Machine Learning Repository},
24
- note = {{DOI}: \\url{10.24432/C5CS3C}}
25
- }
26
- """
27
-
28
- # Dataset info
29
- urls_per_split = {
30
- "train": "https://huggingface.co/datasets/mstz/waveformnoiseV1/raw/main/data.csv"
31
- }
32
- features_types_per_config = {
33
- "waveformnoiseV1": {f"feature_{i}": datasets.Value("float64") for i in range(data.shape[1] - 1)},
34
- "waveformnoiseV1_0": {f"feature_{i}": datasets.Value("float64") for i in range(data.shape[1] - 1)},
35
- "waveformnoiseV1_1": {f"feature_{i}": datasets.Value("float64") for i in range(data.shape[1] - 1)},
36
- "waveformnoiseV1_2": {f"feature_{i}": datasets.Value("float64") for i in range(data.shape[1] - 1)},
37
- }
38
-
39
- features_types_per_config["waveformnoiseV1"]["class"] = datasets.ClassLabel(num_classes=3)
40
- features_types_per_config["waveformnoiseV1_0"]["class"] = datasets.ClassLabel(num_classes=2)
41
- features_types_per_config["waveformnoiseV1_1"]["class"] = datasets.ClassLabel(num_classes=2)
42
- features_types_per_config["waveformnoiseV1_2"]["class"] = datasets.ClassLabel(num_classes=2)
43
- features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
44
-
45
-
46
- class WaveformNoiseV1Config(datasets.BuilderConfig):
47
- def __init__(self, **kwargs):
48
- super(WaveformNoiseV1Config, self).__init__(version=VERSION, **kwargs)
49
- self.features = features_per_config[kwargs["name"]]
50
-
51
-
52
- class WaveformNoiseV1(datasets.GeneratorBasedBuilder):
53
- # dataset versions
54
- DEFAULT_CONFIG = "waveformnoiseV1"
55
- BUILDER_CONFIGS = [
56
- WaveformNoiseV1Config(name="waveformnoiseV1", description="WaveformNoiseV1 for multiclass classification."),
57
- WaveformNoiseV1Config(name="waveformnoiseV1_0", description="WaveformNoiseV1 for binary classification."),
58
- WaveformNoiseV1Config(name="waveformnoiseV1_1", description="WaveformNoiseV1 for binary classification."),
59
- WaveformNoiseV1Config(name="waveformnoiseV1_2", description="WaveformNoiseV1 for binary classification."),
60
-
61
- ]
62
-
63
-
64
- def _info(self):
65
- info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
66
- features=features_per_config[self.config.name])
67
-
68
- return info
69
-
70
- def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
71
- downloads = dl_manager.download_and_extract(urls_per_split)
72
-
73
- return [
74
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
75
- ]
76
-
77
- def _generate_examples(self, filepath: str):
78
- data = pandas.read_csv(filepath, header=None)
79
- data.columns = [f"feature_{i}" for i in range(data.shape[1] - 1)] + ["class"]
80
- data = self.preprocess(data)
81
-
82
- for row_id, row in data.iterrows():
83
- data_row = dict(row)
84
-
85
- yield row_id, data_row
86
-
87
- def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
88
- if self.config.name == "waveformnoiseV1_0":
89
- data["class"] = data["class"].apply(lambda x: 1 if x == 0 else 0)
90
- elif self.config.name == "waveformnoiseV1_1":
91
- data["class"] = data["class"].apply(lambda x: 1 if x == 1 else 0)
92
- elif self.config.name == "waveformnoiseV1_2":
93
- data["class"] = data["class"].apply(lambda x: 1 if x == 2 else 0)
94
-
95
- for feature in _ENCODING_DICS:
96
- encoding_function = partial(self.encode, feature)
97
- data.loc[:, feature] = data[feature].apply(encoding_function)
98
-
99
- return data[list(features_types_per_config[self.config.name].keys())]
100
-
101
- def encode(self, feature, value):
102
- if feature in _ENCODING_DICS:
103
- return _ENCODING_DICS[feature][value]
104
- raise ValueError(f"Unknown feature: {feature}")