Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
File size: 3,786 Bytes
2d8a100
 
 
 
 
1f7e6a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d8a100
 
401a4da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b0298e
401a4da
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
---
language:
- de
- en
- ja
dataset_info:
- config_name: de
  features:
  - name: text
    dtype: string
  - name: label
    dtype: int32
  - name: label_text
    dtype: string
  splits:
  - name: train
    num_bytes: 839355
    num_examples: 5600
  - name: validation
    num_bytes: 72051
    num_examples: 466
  - name: test
    num_bytes: 142977
    num_examples: 934
  download_size: 610356
  dataset_size: 1054383
- config_name: en
  features:
  - name: text
    dtype: string
  - name: label
    dtype: int32
  - name: label_text
    dtype: string
  splits:
  - name: train
    num_bytes: 548743
    num_examples: 4018
  - name: validation
    num_bytes: 46405
    num_examples: 335
  - name: test
    num_bytes: 90712
    num_examples: 670
  download_size: 382768
  dataset_size: 685860
- config_name: en-ext
  features:
  - name: text
    dtype: string
  - name: label
    dtype: int32
  - name: label_text
    dtype: string
  splits:
  - name: train
    num_bytes: 1053699
    num_examples: 8000
  - name: validation
    num_bytes: 87748
    num_examples: 666
  - name: test
    num_bytes: 174870
    num_examples: 1334
  download_size: 731478
  dataset_size: 1316317
- config_name: ja
  features:
  - name: text
    dtype: string
  - name: label
    dtype: int32
  - name: label_text
    dtype: string
  splits:
  - name: train
    num_bytes: 862548
    num_examples: 5600
  - name: validation
    num_bytes: 73019
    num_examples: 466
  - name: test
    num_bytes: 143450
    num_examples: 934
  download_size: 564439
  dataset_size: 1079017
configs:
- config_name: de
  data_files:
  - split: train
    path: de/train-*
  - split: validation
    path: de/validation-*
  - split: test
    path: de/test-*
- config_name: en
  data_files:
  - split: train
    path: en/train-*
  - split: validation
    path: en/validation-*
  - split: test
    path: en/test-*
  default: true
- config_name: en-ext
  data_files:
  - split: train
    path: en-ext/train-*
  - split: validation
    path: en-ext/validation-*
  - split: test
    path: en-ext/test-*
- config_name: ja
  data_files:
  - split: train
    path: ja/train-*
  - split: validation
    path: ja/validation-*
  - split: test
    path: ja/test-*
---

# Amazon Multilingual Counterfactual Dataset 

The dataset contains sentences from Amazon customer reviews (sampled from Amazon product review dataset) annotated for counterfactual detection (CFD) binary classification. Counterfactual statements describe events that did not or cannot take place. Counterfactual statements may be identified as statements of the form – If p was true, then q would be true (i.e. assertions whose antecedent (p) and consequent (q) are known or assumed to be false).

The key features of this dataset are:

* The dataset is multilingual and contains sentences in English, German, and Japanese.
* The labeling was done by professional linguists and high quality was ensured.
* The dataset is supplemented with the annotation guidelines and definitions, which were worked out by professional linguists. We also provide the clue word lists, which are typical for counterfactual sentences and were used for initial data filtering. The clue word lists were also compiled by professional linguists.

Please see the [paper](https://arxiv.org/abs/2104.06893) for the data statistics, detailed description of data collection and annotation.


GitHub repo URL: https://github.com/amazon-research/amazon-multilingual-counterfactual-dataset

## Usage

You can load each of the languages as follows:

```
from datasets import get_dataset_config_names

dataset_id = "SetFit/amazon_counterfactual"
# Returns ['de', 'en', 'en-ext', 'ja']
configs = get_dataset_config_names(dataset_id)
# Load English subset
dset = load_dataset(dataset_id, name="en")
```