Datasets:
mteb
/

Modalities:
Tabular
Text
Formats:
json
Libraries:
Datasets
Dask
Muennighoff commited on
Commit
a1282ad
·
verified ·
1 Parent(s): 5be9a60

Scheduled Commit

Browse files
data/clustering_battle-2cea24b1-39e9-480a-ba22-c617ea05c1fe.jsonl CHANGED
@@ -3,3 +3,4 @@
3
  {"tstamp": 1724163958.9231, "task_type": "clustering", "type": "rightvote", "models": ["", ""], "ip": "", "0_conv_id": "2daa9bdee69c4792aa497adf12b1ab28", "0_model_name": "sentence-transformers/all-MiniLM-L6-v2", "0_prompt": ["Pikachu", "Darth Vader", "Yoda", "Squirtle", "Gandalf", "Legolas", "Mickey Mouse", "Donald Duck", "Charizard"], "0_ncluster": 4, "0_output": "", "0_ndim": "3D (press for 2D)", "0_dim_method": "PCA", "0_clustering_method": "KMeans", "1_conv_id": "0e189a82702941dba2c8f719d3a986a5", "1_model_name": "text-embedding-004", "1_prompt": ["Pikachu", "Darth Vader", "Yoda", "Squirtle", "Gandalf", "Legolas", "Mickey Mouse", "Donald Duck", "Charizard"], "1_ncluster": 4, "1_output": "", "1_ndim": "3D (press for 2D)", "1_dim_method": "PCA", "1_clustering_method": "KMeans"}
4
  {"tstamp": 1724164131.8129, "task_type": "clustering", "type": "leftvote", "models": ["", ""], "ip": "", "0_conv_id": "73c4af80b98d431eba13a3b40ac9b3d7", "0_model_name": "mixedbread-ai/mxbai-embed-large-v1", "0_prompt": ["It's official! 1 Bitcoin = $10,000 USD", "Everyone who's trading BTC right now", "Age reversal not only achievable but also possibly imminent: Retro Biosciences", "MicroRNA regrows 90% of lost hair, study finds", "Speech-to-speech translation for a real-world unwritten language", "Seeking the Best Embedding Model: Experiences with the MTEB Arena?"], "0_ncluster": 3, "0_output": "", "0_ndim": "3D (press for 2D)", "0_dim_method": "PCA", "0_clustering_method": "KMeans", "1_conv_id": "b45cf608bead4124b0d7596b5384345c", "1_model_name": "voyage-multilingual-2", "1_prompt": ["It's official! 1 Bitcoin = $10,000 USD", "Everyone who's trading BTC right now", "Age reversal not only achievable but also possibly imminent: Retro Biosciences", "MicroRNA regrows 90% of lost hair, study finds", "Speech-to-speech translation for a real-world unwritten language", "Seeking the Best Embedding Model: Experiences with the MTEB Arena?"], "1_ncluster": 3, "1_output": "", "1_ndim": "3D (press for 2D)", "1_dim_method": "PCA", "1_clustering_method": "KMeans"}
5
  {"tstamp": 1724280294.9014, "task_type": "clustering", "type": "tievote", "models": ["", ""], "ip": "", "0_conv_id": "d9b5e5b41abf426181ad9670782d952e", "0_model_name": "sentence-transformers/all-MiniLM-L6-v2", "0_prompt": ["Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco"], "0_ncluster": 2, "0_output": "", "0_ndim": "3D (press for 2D)", "0_dim_method": "PCA", "0_clustering_method": "KMeans", "1_conv_id": "d710f7648b854cf793aef2f3a8c661cb", "1_model_name": "nomic-ai/nomic-embed-text-v1.5", "1_prompt": ["Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco"], "1_ncluster": 2, "1_output": "", "1_ndim": "3D (press for 2D)", "1_dim_method": "PCA", "1_clustering_method": "KMeans"}
 
 
3
  {"tstamp": 1724163958.9231, "task_type": "clustering", "type": "rightvote", "models": ["", ""], "ip": "", "0_conv_id": "2daa9bdee69c4792aa497adf12b1ab28", "0_model_name": "sentence-transformers/all-MiniLM-L6-v2", "0_prompt": ["Pikachu", "Darth Vader", "Yoda", "Squirtle", "Gandalf", "Legolas", "Mickey Mouse", "Donald Duck", "Charizard"], "0_ncluster": 4, "0_output": "", "0_ndim": "3D (press for 2D)", "0_dim_method": "PCA", "0_clustering_method": "KMeans", "1_conv_id": "0e189a82702941dba2c8f719d3a986a5", "1_model_name": "text-embedding-004", "1_prompt": ["Pikachu", "Darth Vader", "Yoda", "Squirtle", "Gandalf", "Legolas", "Mickey Mouse", "Donald Duck", "Charizard"], "1_ncluster": 4, "1_output": "", "1_ndim": "3D (press for 2D)", "1_dim_method": "PCA", "1_clustering_method": "KMeans"}
4
  {"tstamp": 1724164131.8129, "task_type": "clustering", "type": "leftvote", "models": ["", ""], "ip": "", "0_conv_id": "73c4af80b98d431eba13a3b40ac9b3d7", "0_model_name": "mixedbread-ai/mxbai-embed-large-v1", "0_prompt": ["It's official! 1 Bitcoin = $10,000 USD", "Everyone who's trading BTC right now", "Age reversal not only achievable but also possibly imminent: Retro Biosciences", "MicroRNA regrows 90% of lost hair, study finds", "Speech-to-speech translation for a real-world unwritten language", "Seeking the Best Embedding Model: Experiences with the MTEB Arena?"], "0_ncluster": 3, "0_output": "", "0_ndim": "3D (press for 2D)", "0_dim_method": "PCA", "0_clustering_method": "KMeans", "1_conv_id": "b45cf608bead4124b0d7596b5384345c", "1_model_name": "voyage-multilingual-2", "1_prompt": ["It's official! 1 Bitcoin = $10,000 USD", "Everyone who's trading BTC right now", "Age reversal not only achievable but also possibly imminent: Retro Biosciences", "MicroRNA regrows 90% of lost hair, study finds", "Speech-to-speech translation for a real-world unwritten language", "Seeking the Best Embedding Model: Experiences with the MTEB Arena?"], "1_ncluster": 3, "1_output": "", "1_ndim": "3D (press for 2D)", "1_dim_method": "PCA", "1_clustering_method": "KMeans"}
5
  {"tstamp": 1724280294.9014, "task_type": "clustering", "type": "tievote", "models": ["", ""], "ip": "", "0_conv_id": "d9b5e5b41abf426181ad9670782d952e", "0_model_name": "sentence-transformers/all-MiniLM-L6-v2", "0_prompt": ["Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco"], "0_ncluster": 2, "0_output": "", "0_ndim": "3D (press for 2D)", "0_dim_method": "PCA", "0_clustering_method": "KMeans", "1_conv_id": "d710f7648b854cf793aef2f3a8c661cb", "1_model_name": "nomic-ai/nomic-embed-text-v1.5", "1_prompt": ["Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco"], "1_ncluster": 2, "1_output": "", "1_ndim": "3D (press for 2D)", "1_dim_method": "PCA", "1_clustering_method": "KMeans"}
6
+ {"tstamp": 1724291653.885, "task_type": "clustering", "type": "leftvote", "models": ["", ""], "ip": "", "0_conv_id": "400fa553f9094ab9b12e6ea1256ec2bc", "0_model_name": "jinaai/jina-embeddings-v2-base-en", "0_prompt": ["Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco"], "0_ncluster": 2, "0_output": "", "0_ndim": "3D (press for 2D)", "0_dim_method": "PCA", "0_clustering_method": "KMeans", "1_conv_id": "83602d74a2cf4a289b5441845f4e176f", "1_model_name": "Salesforce/SFR-Embedding-2_R", "1_prompt": ["Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco"], "1_ncluster": 2, "1_output": "", "1_ndim": "3D (press for 2D)", "1_dim_method": "PCA", "1_clustering_method": "KMeans"}
data/clustering_individual-2cea24b1-39e9-480a-ba22-c617ea05c1fe.jsonl CHANGED
@@ -18,3 +18,7 @@
18
  {"tstamp": 1724189989.0451, "task_type": "clustering", "type": "chat", "model": "sentence-transformers/all-MiniLM-L6-v2", "gen_params": {}, "start": 1724189988.9745, "finish": 1724189989.0451, "ip": "", "conv_id": "edd07deac84b47b4beb7dc42836db52d", "model_name": "sentence-transformers/all-MiniLM-L6-v2", "prompt": ["triangle", "octagon", "sunflower", "lily", "orchid", "sleeping bag", "tent", "water filter", "flashlight", "backpack", "camping stove", "compass", "trumpet", "drums"], "ncluster": 4, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"}
19
  {"tstamp": 1724280273.0904, "task_type": "clustering", "type": "chat", "model": "sentence-transformers/all-MiniLM-L6-v2", "gen_params": {}, "start": 1724280273.0119, "finish": 1724280273.0904, "ip": "", "conv_id": "d9b5e5b41abf426181ad9670782d952e", "model_name": "sentence-transformers/all-MiniLM-L6-v2", "prompt": ["Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco"], "ncluster": 2, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"}
20
  {"tstamp": 1724280273.0904, "task_type": "clustering", "type": "chat", "model": "nomic-ai/nomic-embed-text-v1.5", "gen_params": {}, "start": 1724280273.0119, "finish": 1724280273.0904, "ip": "", "conv_id": "d710f7648b854cf793aef2f3a8c661cb", "model_name": "nomic-ai/nomic-embed-text-v1.5", "prompt": ["Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco"], "ncluster": 2, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"}
 
 
 
 
 
18
  {"tstamp": 1724189989.0451, "task_type": "clustering", "type": "chat", "model": "sentence-transformers/all-MiniLM-L6-v2", "gen_params": {}, "start": 1724189988.9745, "finish": 1724189989.0451, "ip": "", "conv_id": "edd07deac84b47b4beb7dc42836db52d", "model_name": "sentence-transformers/all-MiniLM-L6-v2", "prompt": ["triangle", "octagon", "sunflower", "lily", "orchid", "sleeping bag", "tent", "water filter", "flashlight", "backpack", "camping stove", "compass", "trumpet", "drums"], "ncluster": 4, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"}
19
  {"tstamp": 1724280273.0904, "task_type": "clustering", "type": "chat", "model": "sentence-transformers/all-MiniLM-L6-v2", "gen_params": {}, "start": 1724280273.0119, "finish": 1724280273.0904, "ip": "", "conv_id": "d9b5e5b41abf426181ad9670782d952e", "model_name": "sentence-transformers/all-MiniLM-L6-v2", "prompt": ["Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco"], "ncluster": 2, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"}
20
  {"tstamp": 1724280273.0904, "task_type": "clustering", "type": "chat", "model": "nomic-ai/nomic-embed-text-v1.5", "gen_params": {}, "start": 1724280273.0119, "finish": 1724280273.0904, "ip": "", "conv_id": "d710f7648b854cf793aef2f3a8c661cb", "model_name": "nomic-ai/nomic-embed-text-v1.5", "prompt": ["Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco"], "ncluster": 2, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"}
21
+ {"tstamp": 1724291488.1129, "task_type": "clustering", "type": "chat", "model": "jinaai/jina-embeddings-v2-base-en", "gen_params": {}, "start": 1724291487.8613, "finish": 1724291488.1129, "ip": "", "conv_id": "44ac213a4419485889ea7c1a1738b53e", "model_name": "jinaai/jina-embeddings-v2-base-en", "prompt": ["Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco"], "ncluster": 2, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"}
22
+ {"tstamp": 1724291488.1129, "task_type": "clustering", "type": "chat", "model": "embed-english-v3.0", "gen_params": {}, "start": 1724291487.8613, "finish": 1724291488.1129, "ip": "", "conv_id": "f8d5abbf8e3140578f37d9f625111a64", "model_name": "embed-english-v3.0", "prompt": ["Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco"], "ncluster": 2, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"}
23
+ {"tstamp": 1724291651.0566, "task_type": "clustering", "type": "chat", "model": "jinaai/jina-embeddings-v2-base-en", "gen_params": {}, "start": 1724291650.9733, "finish": 1724291651.0566, "ip": "", "conv_id": "400fa553f9094ab9b12e6ea1256ec2bc", "model_name": "jinaai/jina-embeddings-v2-base-en", "prompt": ["Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco"], "ncluster": 2, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"}
24
+ {"tstamp": 1724291651.0566, "task_type": "clustering", "type": "chat", "model": "Salesforce/SFR-Embedding-2_R", "gen_params": {}, "start": 1724291650.9733, "finish": 1724291651.0566, "ip": "", "conv_id": "83602d74a2cf4a289b5441845f4e176f", "model_name": "Salesforce/SFR-Embedding-2_R", "prompt": ["Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco"], "ncluster": 2, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"}
data/retrieval_individual-2cea24b1-39e9-480a-ba22-c617ea05c1fe.jsonl CHANGED
@@ -268,3 +268,4 @@
268
  {"tstamp": 1724275118.1585, "task_type": "retrieval", "type": "chat", "model": "mixedbread-ai/mxbai-embed-large-v1", "gen_params": {}, "start": 1724275118.0089, "finish": 1724275118.1585, "ip": "", "conv_id": "0a4a089448e740beb05ce408fbb9695d", "model_name": "mixedbread-ai/mxbai-embed-large-v1", "prompt": "Что такое панда?", "output": [["Что такое панда?", "Central Rada\n\nУперше, Український тридцятипятиміліонний Народе, Ти будеш мати змогу сам за себе сказати, хто Ти і як хочеш жити, як окрема нація. З цього часу в дружній сім'ї вільних народів могутньою рукою зачнеш сам собі кувати кращу долю.\nВпав царський уряд, а тимчасовий оголосив, що незабаром скличе Установчі Збори (Учредительное Собраніе) на основі загального, рівного, прямого й таємного виборчого права.\nЗвідти уперше на весь світ пролунає у всій своїй силі справжній голос Твій, справжня воля Твоя.\nДо того ж часу ми закликаємо спокійно, але рішуче домагатися від нового уряду всіх прав, які тобі природно належать, і які Ти повинен мати. Великий Народе, сам хазяїн на Українській землі.\nА в найблизшім часі права на заведення рідної мови по всіх школах, од нижчих до вищих по судах і всіх урядових інституціях. З таким же спокоєм, але рішуче, домагайся, Народе, того ж права для української мови від пастирів церкви, земств і всіх неурядових інституцій на Україні.\nНароде Український!\nСеляни, робітники, салдати, городяне, духовенство і вся українська інтелігенція!\nДодержуйте спокій: не дозволяйте собі ніяких вчинків, що руйнують лад в житті, але разом, щиро й уперто беріться до роботи: до гуртовання в політичні товариства, культурні і економічні спілки, складайте гроші на Український Національний Фонд і вибірайте своїх українських людей, на всі місця – Організуйтесь!"]], "corpus": "wikipedia"}
269
  {"tstamp": 1724280206.6409, "task_type": "retrieval", "type": "chat", "model": "jinaai/jina-embeddings-v2-base-en", "gen_params": {}, "start": 1724280204.3539, "finish": 1724280206.6409, "ip": "", "conv_id": "6e9df3d157b840f5adc9d600327cbfd4", "model_name": "jinaai/jina-embeddings-v2-base-en", "prompt": "Which test was devised to determine whether robots can think?", "output": [["Which test was devised to determine whether robots can think?", "Cognitive test\n\nCognitive tests are assessments of the cognitive capabilities of humans and other animals. Tests administered to humans include various forms of IQ tests; those administered to animals include the mirror test (a test of visual self-awareness) and the T maze test (which tests learning ability). Such testing is used in psychology and psychometrics, as well as other fields studying human and animal intelligence."]], "corpus": "wikipedia"}
270
  {"tstamp": 1724280206.6409, "task_type": "retrieval", "type": "chat", "model": "GritLM/GritLM-7B", "gen_params": {}, "start": 1724280204.3539, "finish": 1724280206.6409, "ip": "", "conv_id": "83a7feaba78448c3a33a50022ac9af94", "model_name": "GritLM/GritLM-7B", "prompt": "Which test was devised to determine whether robots can think?", "output": [["Which test was devised to determine whether robots can think?", "Turing test\n\nThe test was introduced by Turing in his 1950 paper \"Computing Machinery and Intelligence\" while working at the University of Manchester. It opens with the words: \"I propose to consider the question, 'Can machines think? Because \"thinking\" is difficult to define, Turing chooses to \"replace the question by another, which is closely related to it and is expressed in relatively unambiguous words.\" Turing describes the new form of the problem in terms of a three-person game called the \"imitation game\", in which an interrogator asks questions of a man and a woman in another room in order to determine the correct sex of the two players. Turing's new question is: \"Are there imaginable digital computers which would do well in the imitation game?\" This question, Turing believed, was one that could actually be answered. In the remainder of the paper, he argued against all the major objections to the proposition that \"machines can think\".\nSince Turing introduced his test, it has been both highly influential and widely criticized, and has become an important concept in the philosophy of artificial intelligence. Philosopher John Searle would comment on the Turing test in his Chinese room argument, a thought experiment that stipulates that a machine cannot have a \"mind\", \"understanding\", or \"consciousness\", regardless of how intelligently or human-like the program may make the computer behave. Searle criticizes Turing's test and claims it is insufficient to detect the presence of consciousness.\nHistory"]], "corpus": "wikipedia"}
 
 
268
  {"tstamp": 1724275118.1585, "task_type": "retrieval", "type": "chat", "model": "mixedbread-ai/mxbai-embed-large-v1", "gen_params": {}, "start": 1724275118.0089, "finish": 1724275118.1585, "ip": "", "conv_id": "0a4a089448e740beb05ce408fbb9695d", "model_name": "mixedbread-ai/mxbai-embed-large-v1", "prompt": "Что такое панда?", "output": [["Что такое панда?", "Central Rada\n\nУперше, Український тридцятипятиміліонний Народе, Ти будеш мати змогу сам за себе сказати, хто Ти і як хочеш жити, як окрема нація. З цього часу в дружній сім'ї вільних народів могутньою рукою зачнеш сам собі кувати кращу долю.\nВпав царський уряд, а тимчасовий оголосив, що незабаром скличе Установчі Збори (Учредительное Собраніе) на основі загального, рівного, прямого й таємного виборчого права.\nЗвідти уперше на весь світ пролунає у всій своїй силі справжній голос Твій, справжня воля Твоя.\nДо того ж часу ми закликаємо спокійно, але рішуче домагатися від нового уряду всіх прав, які тобі природно належать, і які Ти повинен мати. Великий Народе, сам хазяїн на Українській землі.\nА в найблизшім часі права на заведення рідної мови по всіх школах, од нижчих до вищих по судах і всіх урядових інституціях. З таким же спокоєм, але рішуче, домагайся, Народе, того ж права для української мови від пастирів церкви, земств і всіх неурядових інституцій на Україні.\nНароде Український!\nСеляни, робітники, салдати, городяне, духовенство і вся українська інтелігенція!\nДодержуйте спокій: не дозволяйте собі ніяких вчинків, що руйнують лад в житті, але разом, щиро й уперто беріться до роботи: до гуртовання в політичні товариства, культурні і економічні спілки, складайте гроші на Український Національний Фонд і вибірайте своїх українських людей, на всі місця – Організуйтесь!"]], "corpus": "wikipedia"}
269
  {"tstamp": 1724280206.6409, "task_type": "retrieval", "type": "chat", "model": "jinaai/jina-embeddings-v2-base-en", "gen_params": {}, "start": 1724280204.3539, "finish": 1724280206.6409, "ip": "", "conv_id": "6e9df3d157b840f5adc9d600327cbfd4", "model_name": "jinaai/jina-embeddings-v2-base-en", "prompt": "Which test was devised to determine whether robots can think?", "output": [["Which test was devised to determine whether robots can think?", "Cognitive test\n\nCognitive tests are assessments of the cognitive capabilities of humans and other animals. Tests administered to humans include various forms of IQ tests; those administered to animals include the mirror test (a test of visual self-awareness) and the T maze test (which tests learning ability). Such testing is used in psychology and psychometrics, as well as other fields studying human and animal intelligence."]], "corpus": "wikipedia"}
270
  {"tstamp": 1724280206.6409, "task_type": "retrieval", "type": "chat", "model": "GritLM/GritLM-7B", "gen_params": {}, "start": 1724280204.3539, "finish": 1724280206.6409, "ip": "", "conv_id": "83a7feaba78448c3a33a50022ac9af94", "model_name": "GritLM/GritLM-7B", "prompt": "Which test was devised to determine whether robots can think?", "output": [["Which test was devised to determine whether robots can think?", "Turing test\n\nThe test was introduced by Turing in his 1950 paper \"Computing Machinery and Intelligence\" while working at the University of Manchester. It opens with the words: \"I propose to consider the question, 'Can machines think? Because \"thinking\" is difficult to define, Turing chooses to \"replace the question by another, which is closely related to it and is expressed in relatively unambiguous words.\" Turing describes the new form of the problem in terms of a three-person game called the \"imitation game\", in which an interrogator asks questions of a man and a woman in another room in order to determine the correct sex of the two players. Turing's new question is: \"Are there imaginable digital computers which would do well in the imitation game?\" This question, Turing believed, was one that could actually be answered. In the remainder of the paper, he argued against all the major objections to the proposition that \"machines can think\".\nSince Turing introduced his test, it has been both highly influential and widely criticized, and has become an important concept in the philosophy of artificial intelligence. Philosopher John Searle would comment on the Turing test in his Chinese room argument, a thought experiment that stipulates that a machine cannot have a \"mind\", \"understanding\", or \"consciousness\", regardless of how intelligently or human-like the program may make the computer behave. Searle criticizes Turing's test and claims it is insufficient to detect the presence of consciousness.\nHistory"]], "corpus": "wikipedia"}
271
+ {"tstamp": 1724291455.6553, "task_type": "retrieval", "type": "chat", "model": "GritLM/GritLM-7B", "gen_params": {}, "start": 1724291453.3674, "finish": 1724291455.6553, "ip": "", "conv_id": "56826f4a805844119ad3b306e8cf05e5", "model_name": "GritLM/GritLM-7B", "prompt": "你是谁", "output": [["你是谁", "Who Are You (The Who song)\n\n\"Who Are You\" is the theme to the TV show CSI: Crime Scene Investigation.\nFurthermore, Episode 6 of Season 1 even took its title from the song.\nIn the series 150th episode, Roger Daltrey himself guest-starred (in the season 7 episode \"Living Legend\").\nA modified version was used in the opening of the television series Two and a Half Men, in the episode \"Fish in a Drawer\", which had several references to CSI: Crime Scene Investigation.\nThe song is used again as the theme song for the CSI: Crime Scene Investigation follow up series CSI: Vegas.\nVideo game Rock Band features the song as part of a 12-pack of downloadable tracks from The Who.\nThe Blanks/Worthless Peons in TV show Scrubs perform part of the song in the episode \"My Identity Crisis\".\nAn abbreviated version of the song was performed during the halftime show of Super Bowl XLIV.\nLouis C.K. sings along to the song in the \"Country Drive\" episode of Louie.\n\"Who Are You\" is heard during the 7th season of ESPN's Gruden's QB Camp.\n\"Who Are You\" is used as the theme song to most international versions of the mystery singing competition series The Masked Singer including the American version."]], "corpus": "wikipedia"}