|
"""MTEB Results""" |
|
|
|
from __future__ import annotations |
|
|
|
import json |
|
import os |
|
from pathlib import Path |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """@article{muennighoff2022mteb, |
|
doi = {10.48550/ARXIV.2210.07316}, |
|
url = {https://arxiv.org/abs/2210.07316}, |
|
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, |
|
title = {MTEB: Massive Text Embedding Benchmark}, |
|
publisher = {arXiv}, |
|
journal={arXiv preprint arXiv:2210.07316}, |
|
year = {2022} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """Results on MTEB""" |
|
|
|
URL = "https://huggingface.co/datasets/mteb/results/resolve/main/paths.json" |
|
VERSION = datasets.Version("1.0.1") |
|
EVAL_LANGS = [ |
|
"af", |
|
"afr-eng", |
|
"am", |
|
"amh", |
|
"amh-eng", |
|
"ang-eng", |
|
"ar", |
|
"ar-ar", |
|
"ara-eng", |
|
"arq-eng", |
|
"arz-eng", |
|
"ast-eng", |
|
"awa-eng", |
|
"az", |
|
"aze-eng", |
|
"bel-eng", |
|
"ben-eng", |
|
"ber-eng", |
|
"bn", |
|
"bos-eng", |
|
"bre-eng", |
|
"bul-eng", |
|
"cat-eng", |
|
"cbk-eng", |
|
"ceb-eng", |
|
"ces-eng", |
|
"cha-eng", |
|
"cmn-eng", |
|
"cor-eng", |
|
"csb-eng", |
|
"cy", |
|
"cym-eng", |
|
"da", |
|
"dan-eng", |
|
"de", |
|
"de-fr", |
|
"de-pl", |
|
"deu-eng", |
|
"dsb-eng", |
|
"dtp-eng", |
|
"el", |
|
"ell-eng", |
|
"en", |
|
"en-ar", |
|
"en-de", |
|
"en-en", |
|
"en-tr", |
|
"eng", |
|
"epo-eng", |
|
"es", |
|
"es-en", |
|
"es-es", |
|
"es-it", |
|
"est-eng", |
|
"eus-eng", |
|
"fa", |
|
"fao-eng", |
|
"fi", |
|
"fin-eng", |
|
"fr", |
|
"fr-en", |
|
"fr-pl", |
|
"fra", |
|
"fra-eng", |
|
"fry-eng", |
|
"gla-eng", |
|
"gle-eng", |
|
"glg-eng", |
|
"gsw-eng", |
|
"hau", |
|
"he", |
|
"heb-eng", |
|
"hi", |
|
"hin-eng", |
|
"hrv-eng", |
|
"hsb-eng", |
|
"hu", |
|
"hun-eng", |
|
"hy", |
|
"hye-eng", |
|
"ibo", |
|
"id", |
|
"ido-eng", |
|
"ile-eng", |
|
"ina-eng", |
|
"ind-eng", |
|
"is", |
|
"isl-eng", |
|
"it", |
|
"it-en", |
|
"ita-eng", |
|
"ja", |
|
"jav-eng", |
|
"jpn-eng", |
|
"jv", |
|
"ka", |
|
"kab-eng", |
|
"kat-eng", |
|
"kaz-eng", |
|
"khm-eng", |
|
"km", |
|
"kn", |
|
"ko", |
|
"ko-ko", |
|
"kor-eng", |
|
"kur-eng", |
|
"kzj-eng", |
|
"lat-eng", |
|
"lfn-eng", |
|
"lit-eng", |
|
"lin", |
|
"lug", |
|
"lv", |
|
"lvs-eng", |
|
"mal-eng", |
|
"mar-eng", |
|
"max-eng", |
|
"mhr-eng", |
|
"mkd-eng", |
|
"ml", |
|
"mn", |
|
"mon-eng", |
|
"ms", |
|
"my", |
|
"nb", |
|
"nds-eng", |
|
"nl", |
|
"nl-ende-en", |
|
"nld-eng", |
|
"nno-eng", |
|
"nob-eng", |
|
"nov-eng", |
|
"oci-eng", |
|
"orm", |
|
"orv-eng", |
|
"pam-eng", |
|
"pcm", |
|
"pes-eng", |
|
"pl", |
|
"pl-en", |
|
"pms-eng", |
|
"pol-eng", |
|
"por-eng", |
|
"pt", |
|
"ro", |
|
"ron-eng", |
|
"ru", |
|
"run", |
|
"rus-eng", |
|
"sl", |
|
"slk-eng", |
|
"slv-eng", |
|
"spa-eng", |
|
"sna", |
|
"som", |
|
"sq", |
|
"sqi-eng", |
|
"srp-eng", |
|
"sv", |
|
"sw", |
|
"swa", |
|
"swe-eng", |
|
"swg-eng", |
|
"swh-eng", |
|
"ta", |
|
"tam-eng", |
|
"tat-eng", |
|
"te", |
|
"tel-eng", |
|
"tgl-eng", |
|
"th", |
|
"tha-eng", |
|
"tir", |
|
"tl", |
|
"tr", |
|
"tuk-eng", |
|
"tur-eng", |
|
"tzl-eng", |
|
"uig-eng", |
|
"ukr-eng", |
|
"ur", |
|
"urd-eng", |
|
"uzb-eng", |
|
"vi", |
|
"vie-eng", |
|
"war-eng", |
|
"wuu-eng", |
|
"xho", |
|
"xho-eng", |
|
"yid-eng", |
|
"yor", |
|
"yue-eng", |
|
"zh", |
|
"zh-CN", |
|
"zh-TW", |
|
"zh-en", |
|
"zsm-eng", |
|
] |
|
|
|
|
|
SKIP_KEYS = ["std", "evaluation_time", "main_score", "threshold", "v_measures", "scores_per_experiment"] |
|
|
|
|
|
TRAIN_SPLIT = ["DanishPoliticalCommentsClassification"] |
|
|
|
VALIDATION_SPLIT = [ |
|
"AFQMC", |
|
"Cmnli", |
|
"IFlyTek", |
|
"LEMBSummScreenFDRetrieval", |
|
"MSMARCO", |
|
"MSMARCO-PL", |
|
"MultilingualSentiment", |
|
"Ocnli", |
|
"TNews", |
|
] |
|
|
|
DEV_SPLIT = [ |
|
"CmedqaRetrieval", |
|
"CovidRetrieval", |
|
"DuRetrieval", |
|
"EcomRetrieval", |
|
"MedicalRetrieval", |
|
"MMarcoReranking", |
|
"MMarcoRetrieval", |
|
"MSMARCO", |
|
"MSMARCO-PL", |
|
"T2Reranking", |
|
"T2Retrieval", |
|
"VideoRetrieval", |
|
"TERRa", |
|
"MIRACLReranking", |
|
"MIRACLRetrieval", |
|
] |
|
|
|
TESTFULL_SPLIT = ["OpusparcusPC"] |
|
|
|
STANDARD_SPLIT = ["BrightRetrieval"] |
|
|
|
DEVTEST_SPLIT = ["FloresBitextMining"] |
|
|
|
TEST_AVG_SPLIT = { |
|
"LEMBNeedleRetrieval": [ |
|
"test_256", |
|
"test_512", |
|
"test_1024", |
|
"test_2048", |
|
"test_4096", |
|
"test_8192", |
|
"test_16384", |
|
"test_32768", |
|
], |
|
"LEMBPasskeyRetrieval": [ |
|
"test_256", |
|
"test_512", |
|
"test_1024", |
|
"test_2048", |
|
"test_4096", |
|
"test_8192", |
|
"test_16384", |
|
"test_32768", |
|
], |
|
} |
|
|
|
MODELS = sorted(list(set([str(file).split('/')[-1] for file in (Path(__file__).parent / "results").glob("*") if file.is_dir()]))) |
|
|
|
|
|
def get_paths(): |
|
import collections, json, os |
|
|
|
files = collections.defaultdict(list) |
|
for model_dir in MODELS: |
|
results_model_dir = os.path.join("results", model_dir) |
|
if not os.path.isdir(results_model_dir): |
|
print(f"Skipping {results_model_dir}") |
|
continue |
|
for revision_folder in os.listdir(results_model_dir): |
|
if not os.path.isdir(os.path.join(results_model_dir, revision_folder)): |
|
continue |
|
if revision_folder == "external": |
|
continue |
|
for res_file in os.listdir(os.path.join(results_model_dir, revision_folder)): |
|
if (res_file.endswith(".json")) and not ( |
|
res_file.endswith(("overall_results.json", "model_meta.json")) |
|
): |
|
results_model_file = os.path.join(results_model_dir, revision_folder, res_file) |
|
files[model_dir].append(results_model_file) |
|
with open("paths.json", "w") as f: |
|
json.dump(files, f, indent=2) |
|
return files |
|
|
|
|
|
class MTEBResults(datasets.GeneratorBasedBuilder): |
|
"""MTEBResults""" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name=model, |
|
description=f"{model} MTEB results", |
|
version=VERSION, |
|
) |
|
for model in MODELS |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"mteb_dataset_name": datasets.Value("string"), |
|
"eval_language": datasets.Value("string"), |
|
"metric": datasets.Value("string"), |
|
"score": datasets.Value("float"), |
|
"split": datasets.Value("string"), |
|
"hf_subset": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
path_file = dl_manager.download_and_extract(URL) |
|
|
|
|
|
with open(path_file) as f: |
|
files = json.load(f) |
|
downloaded_files = dl_manager.download_and_extract(files[self.config.name]) |
|
return [datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files})] |
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info(f"Generating examples from {filepath}") |
|
out = [] |
|
|
|
for path in filepath: |
|
with open(path, encoding="utf-8") as f: |
|
res_dict = json.load(f) |
|
|
|
ds_name = res_dict.get("mteb_dataset_name", res_dict.get("task_name")) |
|
|
|
res_dict = res_dict.get("scores", res_dict) |
|
|
|
split = "test" |
|
if (ds_name in TRAIN_SPLIT) and ("train" in res_dict): |
|
split = "train" |
|
elif (ds_name in VALIDATION_SPLIT) and ("validation" in res_dict): |
|
split = "validation" |
|
elif (ds_name in DEV_SPLIT) and ("dev" in res_dict): |
|
split = "dev" |
|
elif (ds_name in TESTFULL_SPLIT) and ("test.full" in res_dict): |
|
split = "test.full" |
|
elif ds_name in STANDARD_SPLIT: |
|
split = [] |
|
if "standard" in res_dict: |
|
split += ["standard"] |
|
if "long" in res_dict: |
|
split += ["long"] |
|
elif (ds_name in DEVTEST_SPLIT) and ("devtest" in res_dict): |
|
split = "devtest" |
|
elif ds_name in TEST_AVG_SPLIT: |
|
|
|
res_dict = {} |
|
for split in TEST_AVG_SPLIT[ds_name]: |
|
|
|
if isinstance(res_dict.get(split), dict): |
|
for k, v in res_dict.get(split, {}).items(): |
|
if k in ["hf_subset", "languages"]: |
|
res_dict[k] = v |
|
|
|
v /= len(TEST_AVG_SPLIT[ds_name]) |
|
if k not in res_dict: |
|
res_dict[k] = v |
|
else: |
|
res_dict[k] += v |
|
|
|
elif isinstance(res_dict.get(split), list): |
|
assert len(res_dict[split]) == 1, "Only single-lists supported for now" |
|
for k, v in res_dict[split][0].items(): |
|
if k in ["hf_subset", "languages"]: |
|
res_dict[k] = v |
|
if not isinstance(v, float): |
|
continue |
|
v /= len(TEST_AVG_SPLIT[ds_name]) |
|
if k not in res_dict: |
|
res_dict[k] = v |
|
else: |
|
res_dict[k] += v |
|
split = "test_avg" |
|
res_dict = {split: [res_dict]} |
|
elif "test" not in res_dict: |
|
print(f"Skipping {ds_name} as split {split} not present.") |
|
continue |
|
|
|
splits = [split] if not isinstance(split, list) else split |
|
full_res_dict = res_dict |
|
for split in splits: |
|
res_dict = full_res_dict.get(split) |
|
|
|
|
|
if isinstance(res_dict, list): |
|
for res in res_dict: |
|
lang = res.pop("languages", [""]) |
|
subset = res.pop("hf_subset", "") |
|
if len(lang) == 1: |
|
lang = lang[0].replace("eng-Latn", "") |
|
else: |
|
lang = "_".join(lang) |
|
if not lang: |
|
lang = subset |
|
for metric, score in res.items(): |
|
if metric in SKIP_KEYS: |
|
continue |
|
if isinstance(score, dict): |
|
|
|
|
|
for k, v in score.items(): |
|
if not isinstance(v, float): |
|
print(f"WARNING: Expected float, got {v} for {ds_name} {lang} {metric} {k}") |
|
continue |
|
if metric in SKIP_KEYS: |
|
continue |
|
out.append( |
|
{ |
|
"mteb_dataset_name": ds_name, |
|
"eval_language": lang, |
|
"metric": metric + "_" + k, |
|
"score": v * 100, |
|
"hf_subset": subset, |
|
} |
|
) |
|
else: |
|
if not isinstance(score, float): |
|
print(f"WARNING: Expected float, got {score} for {ds_name} {lang} {metric}") |
|
continue |
|
out.append( |
|
{ |
|
"mteb_dataset_name": ds_name, |
|
"eval_language": lang, |
|
"metric": metric, |
|
"score": score * 100, |
|
"split": split, |
|
"hf_subset": subset, |
|
} |
|
) |
|
|
|
|
|
else: |
|
is_multilingual = any(x in res_dict for x in EVAL_LANGS) |
|
langs = res_dict.keys() if is_multilingual else ["en"] |
|
for lang in langs: |
|
if lang in SKIP_KEYS: |
|
continue |
|
test_result_lang = res_dict.get(lang) if is_multilingual else res_dict |
|
subset = test_result_lang.pop("hf_subset", "") |
|
if subset == "" and is_multilingual: |
|
subset = lang |
|
for metric, score in test_result_lang.items(): |
|
if not isinstance(score, dict): |
|
score = {metric: score} |
|
for sub_metric, sub_score in score.items(): |
|
if any(x in sub_metric for x in SKIP_KEYS): |
|
continue |
|
if isinstance(sub_score, dict): |
|
continue |
|
out.append( |
|
{ |
|
"mteb_dataset_name": ds_name, |
|
"eval_language": lang if is_multilingual else "", |
|
"metric": f"{metric}_{sub_metric}" if metric != sub_metric else metric, |
|
"score": sub_score * 100, |
|
"split": split, |
|
"hf_subset": subset, |
|
} |
|
) |
|
for idx, row in enumerate(sorted(out, key=lambda x: x["mteb_dataset_name"])): |
|
yield idx, row |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
get_paths() |
|
|