|
import json |
|
|
|
|
|
def create_voice_model_dataset(num_names): |
|
|
|
dataset = {"voiceModels": []} |
|
|
|
for i in range(1, num_names + 1): |
|
voice_model = { |
|
"name": f"VoiceModel_{i}", |
|
"description": f"Description for Voice Model {i}", |
|
"version": "1.0", |
|
"language": "en-US", |
|
"voiceSettings": { |
|
"gender": "neutral", |
|
"age": "adult", |
|
"accent": "American", |
|
"tone": "natural", |
|
"speakingRate": 1.0, |
|
"volumeGain": 0.0 |
|
}, |
|
"speechSynthesis": { |
|
"voiceName": f"VoiceModel_{i}_Voice", |
|
"sampleRateHertz": 24000, |
|
"pitch": 1.0, |
|
"range": { |
|
"min": 80, |
|
"max": 250 |
|
}, |
|
"intelligibility": 0.8, |
|
"emotionalTone": { |
|
"happy": 0.6, |
|
"sad": 0.3, |
|
"angry": 0.2, |
|
"neutral": 0.9 |
|
} |
|
}, |
|
"phoneticModels": [ |
|
{ |
|
"name": f"VoiceModel_{i}_Phonetic_Model", |
|
"description": "Basic phonetic model for standard American English pronunciation.", |
|
"phonemes": [ |
|
"AA", "AE", "AH", "AO", "AW", "AY", "B", "CH", "D", "DH", "EH", "ER", "EY", "F", "G", "HH", "IH", "IY", "JH", "K", "L", "M", "N", "NG", "OW", "OY", "P", "R", "S", "SH", "T", "TH", "UH", "UW", "V", "W", "Y", "Z", "ZH" |
|
] |
|
} |
|
], |
|
"sampleVoices": [ |
|
{ |
|
"name": f"VoiceModel_{i}_Sample_Voice_1", |
|
"description": "Sample voice for formal contexts.", |
|
"gender": "male", |
|
"age": "adult", |
|
"audioFiles": [ |
|
f"sample_{i}_1.wav", |
|
f"sample_{i}_2.wav", |
|
f"sample_{i}_3.wav" |
|
] |
|
}, |
|
{ |
|
"name": f"VoiceModel_{i}_Sample_Voice_2", |
|
"description": "Sample voice for informal contexts.", |
|
"gender": "female", |
|
"age": "adult", |
|
"audioFiles": [ |
|
f"sample_{i}_4.wav", |
|
f"sample_{i}_5.wav", |
|
f"sample_{i}_6.wav" |
|
] |
|
} |
|
], |
|
"performanceMetrics": { |
|
"accuracy": 0.95, |
|
"latency": "100ms", |
|
"responseTime": "250ms" |
|
}, |
|
"additionalFeatures": { |
|
"emotionRecognition": True, |
|
"contextualAdaptation": True, |
|
"multiLanguageSupport": False |
|
} |
|
} |
|
dataset["voiceModels"].append(voice_model) |
|
|
|
return dataset |
|
|
|
|
|
num_names = 4000 |
|
dataset = create_voice_model_dataset(num_names) |
|
|
|
|
|
with open('voice_model_dataset.json', 'w') as f: |
|
json.dump(dataset, f, indent=4) |
|
|
|
print(f"Dataset with {num_names} voice models has been created and saved to 'voice_model_dataset.json'.") |
|
|