Datasets:

Languages:
English
DOI:
License:
arminmehrabian commited on
Commit
b8f650e
·
verified ·
1 Parent(s): 057d9fc

Update README.md

Browse files

Added load to pyG script.

Files changed (1) hide show
  1. README.md +101 -0
README.md CHANGED
@@ -219,3 +219,104 @@ To load the Cypher script, execute it directly using a command-line interface fo
219
  ```bash
220
  neo4j-shell -file path/to/graph.cypher
221
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
219
  ```bash
220
  neo4j-shell -file path/to/graph.cypher
221
  ```
222
+
223
+ ### 4. Loading the Knowledge Graph into PyTorch Geometric (PyG)
224
+
225
+ This knowledge graph can be loaded into PyG (PyTorch Geometric) for further processing, analysis, or model training. Below is an example script that shows how to load the JSON data into a PyG-compatible `HeteroData` object.
226
+
227
+ The script first reads the JSON data, processes nodes and relationships, and then loads everything into a `HeteroData` object for use with PyG.
228
+
229
+ ```python
230
+ import json
231
+ import torch
232
+ from torch_geometric.data import HeteroData
233
+ from collections import defaultdict
234
+
235
+ # Load JSON data from file
236
+ file_path = "path/to/graph.json" # Replace with your actual file path
237
+ graph_data = []
238
+ with open(file_path, "r") as f:
239
+ for line in f:
240
+ try:
241
+ graph_data.append(json.loads(line))
242
+ except json.JSONDecodeError as e:
243
+ print(f"Error decoding JSON line: {e}")
244
+ continue
245
+
246
+ # Initialize HeteroData object
247
+ data = HeteroData()
248
+
249
+ # Mapping for node indices per node type
250
+ node_mappings = defaultdict(dict)
251
+
252
+ # Temporary storage for properties to reduce concatenation cost
253
+ node_properties = defaultdict(lambda: defaultdict(list))
254
+ edge_indices = defaultdict(lambda: defaultdict(list))
255
+
256
+ # Process each item in the loaded JSON data
257
+ for item in graph_data:
258
+ if item['type'] == 'node':
259
+ node_type = item['labels'][0] # Assuming first label is the node type
260
+ node_id = item['id']
261
+ properties = item['properties']
262
+
263
+ # Store the node index mapping
264
+ node_index = len(node_mappings[node_type])
265
+ node_mappings[node_type][node_id] = node_index
266
+
267
+ # Store properties temporarily by type
268
+ for key, value in properties.items():
269
+ if isinstance(value, list) and all(isinstance(v, (int, float)) for v in value):
270
+ node_properties[node_type][key].append(torch.tensor(value, dtype=torch.float))
271
+ elif isinstance(value, (int, float)):
272
+ node_properties[node_type][key].append(torch.tensor([value], dtype=torch.float))
273
+ else:
274
+ node_properties[node_type][key].append(value) # non-numeric properties as lists
275
+
276
+ elif item['type'] == 'relationship':
277
+ start_type = item['start']['labels'][0]
278
+ end_type = item['end']['labels'][0]
279
+ start_id = item['start']['id']
280
+ end_id = item['end']['id']
281
+ edge_type = item['label']
282
+
283
+ # Map start and end node indices
284
+ start_idx = node_mappings[start_type][start_id]
285
+ end_idx = node_mappings[end_type][end_id]
286
+
287
+ # Append to edge list
288
+ edge_indices[(start_type, edge_type, end_type)]['start'].append(start_idx)
289
+ edge_indices[(start_type, edge_type, end_type)]['end'].append(end_idx)
290
+
291
+ # Finalize node properties by batch processing
292
+ for node_type, properties in node_properties.items():
293
+ data[node_type].num_nodes = len(node_mappings[node_type])
294
+ for key, values in properties.items():
295
+ if isinstance(values[0], torch.Tensor):
296
+ data[node_type][key] = torch.stack(values)
297
+ else:
298
+ data[node_type][key] = values # Keep non-tensor properties as lists
299
+
300
+ # Finalize edge indices in bulk
301
+ for (start_type, edge_type, end_type), indices in edge_indices.items():
302
+ edge_index = torch.tensor([indices['start'], indices['end']], dtype=torch.long)
303
+ data[start_type, edge_type, end_type].edge_index = edge_index
304
+
305
+ # Display statistics for verification
306
+ print("Nodes and Properties:")
307
+ for node_type in data.node_types:
308
+ print(f"\nNode Type: {node_type}")
309
+ print(f"Number of Nodes: {data[node_type].num_nodes}")
310
+ for key, value in data[node_type].items():
311
+ if key != 'num_nodes':
312
+ if isinstance(value, torch.Tensor):
313
+ print(f" - {key}: {value.shape}")
314
+ else:
315
+ print(f" - {key}: {len(value)} items (non-numeric)")
316
+
317
+ print("\nEdges and Types:")
318
+ for edge_type in data.edge_types:
319
+ edge_index = data[edge_type].edge_index
320
+ print(f"Edge Type: {edge_type} - Number of Edges: {edge_index.size(1)} - Shape: {edge_index.shape}")
321
+
322
+ ```