Datasets:

Languages:
Chinese
ArXiv:
License:
yuyijiong commited on
Commit
bc0ad05
·
verified ·
1 Parent(s): e2d8aa4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -6
README.md CHANGED
@@ -46,7 +46,8 @@ Using Magpie, three-round dialogue data was synthesized for tasks including:
46
  - **Advice-seeking**: Offers thoughtful advice and guidance, helping users address personal, professional, or life challenges.
47
  - **Brainstorming**: Generates ideas and fosters creative thinking, assisting users in exploring possibilities and proposing innovative concepts.
48
 
49
- #### **2. Additional Tasks Referenced from SmolTalk**
 
50
 
51
  Using Magpie, one-round dialogue tasks were synthesized for:
52
 
@@ -81,7 +82,7 @@ The construction of the **smoltalk-chinese** dataset adheres to strict standards
81
 
82
  #### **Deduplication**
83
 
84
- - The **gte-large-zh** model encoded the first instruction in the dialogue data. Deduplication was performed based on embedding similarity (threshold set at 0.8), ensuring uniqueness and diversity in the data.
85
 
86
  #### **Task Type and Text Length Statistics**
87
 
@@ -99,7 +100,7 @@ To verify the fine-tuning effectiveness of the **smoltalk-chinese** dataset, the
99
  The base model used was **opencsg/csg-wukong-ablation-chinese-fineweb-edu** (a 2B model pretrained on the **chinese-fineweb-edu** dataset).
100
 
101
  2. **Fine-tuning Process**
102
- Fine-tuning was performed on both the **smoltalk-chinese** and **infinity-instruct** datasets (selecting 7M entries and the Chinese subset of approximately 1M entries), with the following settings:
103
 
104
  - **Epochs**: 2
105
  - **Learning Rate**: 3e-4
@@ -107,7 +108,7 @@ To verify the fine-tuning effectiveness of the **smoltalk-chinese** dataset, the
107
  - **Global Batch Size**: 32
108
 
109
  3. **Evaluation Results**
110
- The model's Chinese conversational capabilities were evaluated on the **alignbench** platform. Results demonstrated significant advantages for the model fine-tuned on the **smoltalk-chinese** dataset across multiple metrics, confirming the dataset's effectiveness in improving Chinese language model performance.
111
 
112
  | Dataset | Professional Skills | Chinese Comprehension | Basic Tasks | Math Calculation | Text Writing | General Q&A | Role Playing | Logical Reasoning | Chinese Reasoning | Chinese Language | Total Score |
113
  | ----------------------------- | ------------------- | --------------------- | ----------- | ---------------- | ------------ | ----------- | ------------ | ----------------- | ----------------- | ---------------- | ----------- |
@@ -228,14 +229,14 @@ smoltalk-chinese 数据集的构建过程严格遵循高标准,确保数据的
228
 
229
  ### **微调过程**
230
 
231
- 分别在 smoltalk-chinese 和 infinity-instruct 数据集(选取7M和Gen的中文部分,约1M条)上进行微调,设置为
232
 
233
  - **Epochs**: 2
234
  - **Learning Rate**: 3e-4
235
  - **Scheduler**: Cosine decay
236
  - **Global Batch Size**: 32
237
 
238
- alignbench 平台上评估模型的中文对话能力,结果表明,基于 smoltalk-chinese 微调的模型在多个指标上表现出显著优势,验证了 smoltalk-chinese 数据集在提升中文语言模型表现方面的有效性。
239
 
240
  | 数据集 | 专业能力 | 中文理解 | 基本任务 | 数学计算 | 文本写作 | 综合问答 | 角色扮演 | 逻辑推理 | 中文推理 | 中文语言 | 总分 |
241
  | ----------------------------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | ---- |
 
46
  - **Advice-seeking**: Offers thoughtful advice and guidance, helping users address personal, professional, or life challenges.
47
  - **Brainstorming**: Generates ideas and fosters creative thinking, assisting users in exploring possibilities and proposing innovative concepts.
48
 
49
+ ####
50
+ **2. Additional Tasks Referenced from SmolTalk**
51
 
52
  Using Magpie, one-round dialogue tasks were synthesized for:
53
 
 
82
 
83
  #### **Deduplication**
84
 
85
+ - The **gte-large-zh** model encoded the first instruction in the conversation data. Deduplication was performed based on embedding similarity (threshold set at 0.8), ensuring the diversity of the data.
86
 
87
  #### **Task Type and Text Length Statistics**
88
 
 
100
  The base model used was **opencsg/csg-wukong-ablation-chinese-fineweb-edu** (a 2B model pretrained on the **chinese-fineweb-edu** dataset).
101
 
102
  2. **Fine-tuning Process**
103
+ Fine-tuning was performed on **smoltalk-chinese**, **Magpie-Qwen2-Pro-200K-Chinese** and **infinity-instruct** datasets (selecting 7M entries and the Chinese subset of approximately 1M entries), with the following settings:
104
 
105
  - **Epochs**: 2
106
  - **Learning Rate**: 3e-4
 
108
  - **Global Batch Size**: 32
109
 
110
  3. **Evaluation Results**
111
+ The model's Chinese conversational capabilities were evaluated on [**Alignbench**](https://github.com/THUDM/AlignBench). Results demonstrated significant advantages for the model fine-tuned on the **smoltalk-chinese** dataset across multiple metrics, confirming the dataset's effectiveness in improving Chinese language model performance.
112
 
113
  | Dataset | Professional Skills | Chinese Comprehension | Basic Tasks | Math Calculation | Text Writing | General Q&A | Role Playing | Logical Reasoning | Chinese Reasoning | Chinese Language | Total Score |
114
  | ----------------------------- | ------------------- | --------------------- | ----------- | ---------------- | ------------ | ----------- | ------------ | ----------------- | ----------------- | ---------------- | ----------- |
 
229
 
230
  ### **微调过程**
231
 
232
+ 分别在 smoltalk-chinese 和 Magpie-Qwen2-Pro-200K-Chinese 和 infinity-instruct 数据集(选取7M和Gen的中文部分,约1M条)上进行微调,训练设置为
233
 
234
  - **Epochs**: 2
235
  - **Learning Rate**: 3e-4
236
  - **Scheduler**: Cosine decay
237
  - **Global Batch Size**: 32
238
 
239
+ [**Alignbench**](https://github.com/THUDM/AlignBench) 上评估模型的中文对话能力,结果表明,基于 smoltalk-chinese 微调的模型在多个指标上表现出显著优势,验证了 smoltalk-chinese 数据集在提升中文语言模型表现方面的有效性。
240
 
241
  | 数据集 | 专业能力 | 中文理解 | 基本任务 | 数学计算 | 文本写作 | 综合问答 | 角色扮演 | 逻辑推理 | 中文推理 | 中文语言 | 总分 |
242
  | ----------------------------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | ---- |