Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
navvew commited on
Commit
15d5756
·
verified ·
1 Parent(s): bf5dfcf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -29
README.md CHANGED
@@ -1,29 +1,61 @@
1
- ---
2
- license: cc-by-4.0
3
- dataset_info:
4
- features:
5
- - name: mask
6
- dtype: image
7
- - name: target_img_dataset
8
- dtype: string
9
- - name: img_id
10
- dtype: string
11
- - name: ann_id
12
- dtype: string
13
- splits:
14
- - name: train
15
- num_bytes: 2555862476.36
16
- num_examples: 888230
17
- - name: test
18
- num_bytes: 35729190.0
19
- num_examples: 752
20
- download_size: 681492456
21
- dataset_size: 2591591666.36
22
- configs:
23
- - config_name: default
24
- data_files:
25
- - split: train
26
- path: data/train-*
27
- - split: test
28
- path: data/test-*
29
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ dataset_info:
4
+ features:
5
+ - name: mask
6
+ dtype: image
7
+ - name: target_img_dataset
8
+ dtype: string
9
+ - name: img_id
10
+ dtype: string
11
+ - name: ann_id
12
+ dtype: string
13
+ splits:
14
+ - name: train
15
+ num_bytes: 2555862476.36
16
+ num_examples: 888230
17
+ - name: test
18
+ num_bytes: 35729190.0
19
+ num_examples: 752
20
+ download_size: 681492456
21
+ dataset_size: 2591591666.36
22
+ configs:
23
+ - config_name: default
24
+ data_files:
25
+ - split: train
26
+ path: data/train-*
27
+ - split: test
28
+ path: data/test-*
29
+ ---
30
+
31
+ # Dataset Card for PIPE Masks Dataset
32
+
33
+ ## Dataset Summary
34
+
35
+ The PIPE (Paint by InPaint Edit) dataset is designed to enhance the efficacy of mask-free, instruction-following image editing models by providing a large-scale collection of image pairs and diverse object addition instructions. Comprising approximately 1 million image pairs, PIPE includes both source and target images, along with corresponding natural language instructions for object addition. The dataset leverages extensive image segmentation datasets (COCO, Open Images, LVIS) and employs a Stable Diffusion-based inpainting model to create pairs of images with and without objects. Additionally, it incorporates a variety of instruction generation techniques, including class name-based, VLM-LLM based, and manual reference-based instructions, resulting in nearly 1.9 million different instructions. We are also providing a test set for image addition evaluation.
36
+ Here, we provide the masks used for the inpainting process to generate the source image for the PIPE dataset.
37
+ Further details can be found in our [project page](https://rotsteinnoam.github.io/Paint-by-Inpaint) and [paper](arxiv.org/abs/2404.18212).
38
+
39
+ ## Columns
40
+
41
+ - `mask`: The removed object mask used for creating the inpainted image.
42
+ - `target_img_dataset`: The dataset to which the target image belongs.
43
+ - `img_id`: The unique identifier of the GT image (the target image).
44
+ - `ann_id`: The identifier of the object segmentation annotation of the object removed.
45
+
46
+ ## Loading the PIPE Masks Dataset
47
+
48
+ Here is an example of how to load and use this dataset with the `datasets` library:
49
+
50
+ ```python
51
+ from datasets import load_dataset
52
+
53
+ data_files = {"train": "data/train-*", "test": "data/test-*"}
54
+ dataset_masks = load_dataset('paint-by-inpaint/PIPE_Masks',data_files=data_files)
55
+
56
+ # Display an example
57
+ example_train_mask = dataset_masks['train'][0]
58
+ print(example_train_mask)
59
+
60
+ example_test_mask = dataset_masks['test'][0]
61
+ print(example_test_mask)