file_path
stringlengths
21
202
content
stringlengths
13
1.02M
size
int64
13
1.02M
lang
stringclasses
9 values
avg_line_length
float64
5.43
98.5
max_line_length
int64
12
993
alphanum_fraction
float64
0.27
0.91
CesiumGS/cesium-omniverse/tests/configs/gltfConfig.yaml
--- # scenarios: default: hasNormals : True hasTexcoords : True hasRasterOverlayTexcoords : False hasVertexColors : False doubleSided : False # Material Attributes hasMaterial : True alphaMode : 0 alphaCutoff : 0.5 baseAlpha : 1.0 metallicFactor : 1.0 roughnessFactor : 1.0 baseColorTextureWrapS : 10497 # opengl enum for "repeat" baseColorTextureWrapT : 10497 emissiveFactor: - 0 - 0 - 0 baseColorFactor: - 1 - 1 - 1 # Note: all files should all be .glbs. Anything that uses or queries # accessors requires (included in some tests) requires a call to # CesiumGltfReader::resolveExternalData, which proved to be complicated to integrate. Duck.glb: hasTexcoords : True metallicFactor : 0 Mesh_Primitives_00.glb: hasNormals : False hasTexcoords : False baseColorFactor: - 0 - 1 - 0 Mesh_PrimitivesUV_00.glb: hasNormals : False hasTexcoords : False Mesh_PrimitivesUV_06.glb: hasVertexColors : True Mesh_PrimitivesUV_08.glb: hasVertexColors : True Material_07.glb: metallicFactor : 0.0 emissiveFactor : - 1 - 1 - 1 baseColorFactor : - 0.2 - 0.2 - 0.2 Material_AlphaBlend_05.glb: hasNormals : False hasTexcoords : True alphaMode : 2 baseAlpha : 0.7 Material_AlphaBlend_06.glb: hasNormals : False hasVertexColors : True hasTexcoords : True alphaMode : 2 baseAlpha : 0.7 Material_AlphaMask_04.glb: hasNormals : False hasTexcoords : True alphaMode : 1 alphaCutoff : 0.0 Material_AlphaMask_06.glb: hasNormals : False hasTexcoords : True alphaMode : 1 alphaCutoff : 0.6 baseAlpha : 0.7 Mesh_PrimitiveVertexColor_00.glb: hasMaterial : False hasTexcoords : False hasVertexColors : True Mesh_PrimitiveVertexColor_01.glb: hasMaterial : False hasTexcoords : False hasVertexColors : True Mesh_PrimitiveVertexColor_02.glb: hasMaterial : False hasTexcoords : False hasVertexColors : True Mesh_PrimitiveVertexColor_03.glb: hasMaterial : False hasTexcoords : False hasVertexColors : True Mesh_PrimitiveVertexColor_04.glb: hasMaterial : False hasTexcoords : False hasVertexColors : True Mesh_PrimitiveVertexColor_05.glb: hasMaterial : False hasTexcoords : False hasVertexColors : True
2,467
YAML
19.566667
87
0.655857
CesiumGS/cesium-omniverse/tests/bindings/PythonBindings.cpp
#include "CesiumOmniverseCppTests.h" #include <carb/BindingsPythonUtils.h> #ifdef CESIUM_OMNI_CLANG #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wgnu-zero-variadic-macro-arguments" #endif CARB_BINDINGS("cesium.omniverse.cpp.tests.python") #ifdef CESIUM_OMNI_CLANG #pragma clang diagnostic pop #endif DISABLE_PYBIND11_DYNAMIC_CAST(cesium::omniverse::tests::ICesiumOmniverseCppTestsInterface) PYBIND11_MODULE(CesiumOmniverseCppTestsPythonBindings, m) { using namespace cesium::omniverse::tests; m.doc() = "pybind11 cesium.omniverse.cpp.tests bindings"; // clang-format off carb::defineInterfaceClass<ICesiumOmniverseCppTestsInterface>( m, "ICesiumOmniverseCppTestsInterface", "acquire_cesium_omniverse_tests_interface", "release_cesium_omniverse_tests_interface") .def("set_up_tests", &ICesiumOmniverseCppTestsInterface::setUpTests) .def("run_all_tests", &ICesiumOmniverseCppTestsInterface::runAllTests) .def("on_startup", &ICesiumOmniverseCppTestsInterface::onStartup) .def("on_shutdown", &ICesiumOmniverseCppTestsInterface::onShutdown); // clang-format on }
1,147
C++
33.787878
135
0.768963
CesiumGS/cesium-omniverse/tests/include/tilesetTests.h
#pragma once #include <pxr/usd/usd/common.h> namespace cesium::omniverse { class Context; } void setUpTilesetTests(cesium::omniverse::Context* pContext, const pxr::SdfPath& rootPath); void cleanUpTilesetTests(const pxr::UsdStageRefPtr& stage);
246
C
23.699998
91
0.784553
CesiumGS/cesium-omniverse/tests/include/CesiumOmniverseCppTests.h
#pragma once #include <carb/Interface.h> namespace cesium::omniverse::tests { class ICesiumOmniverseCppTestsInterface { public: CARB_PLUGIN_INTERFACE("cesium::omniverse::tests::ICesiumOmniverseCppTestsInterface", 0, 0); /** * @brief Call this on extension startup. * * @param cesiumExtensionLocation Path to the Cesium Omniverse extension location. */ virtual void onStartup(const char* cesiumExtensionLocation) noexcept = 0; /** * @brief Call this on extension shutdown. */ virtual void onShutdown() noexcept = 0; /** * @brief To be run at least one fram prior to `runAllTests` in order to * allow time for USD notifications to propogate. */ virtual void setUpTests(long int stage_id) noexcept = 0; /** * @brief Collects and runs all the doctest tests defined in adjacent .cpp files */ virtual void runAllTests() noexcept = 0; }; } // namespace cesium::omniverse::tests
971
C
26.771428
95
0.679712
CesiumGS/cesium-omniverse/tests/include/UsdUtilTests.h
#pragma once #include <pxr/usd/usd/common.h> namespace cesium::omniverse { class Context; } void setUpUsdUtilTests(cesium::omniverse::Context* pContext, const pxr::SdfPath& rootPath); void cleanUpUsdUtilTests(const pxr::UsdStageRefPtr& stage);
246
C
23.699998
91
0.784553
CesiumGS/cesium-omniverse/docs/README.md
# Cesium for Omniverse Documentation ## Usage - [Developer Setup](./developer-setup/README.md) - [Release Guide](./release-guide/README.md) ## General Omniverse Tips - [Omniverse Connector & Live Sync for SketchUp](./connectors/README.md) - [Programmatically Changing Settings](./kit/README.md) - [Building USD On Ubuntu 22.04](./developer-setup/building_usd_on_ubuntu2204.md)
381
Markdown
28.384613
81
0.745407
CesiumGS/cesium-omniverse/docs/onboarding/README.md
## What is Omniverse? Omniverse is a tool that provides an interface for various other tools to interact with a shared 3d environment. The core of this is a USD stage and a Fabric stage. The tools that interact with these stages do so via extensions. To better understand extensions and how they're defined, check out the [official Omniverse extension template](https://github.com/NVIDIA-Omniverse/kit-extension-template) for a "hello world" extension. There is also a similar [C++ extension template](https://github.com/NVIDIA-Omniverse/kit-extension-template-cpp). ### Our Extensions/Apps - Cesium for Omniverse ("The main extension") - Responsible for streaming geospatial data onto the stages, and providing the user interface. - Cesium Usd plugins - Required by the main extension to facilitatge interactions with the USD stage. - Cesium Powertools - Helpful additions for developers, such as one-click ways to open debug interfaces and print the fabric stage. - Cesium Cpp Tests - Tests of the C++ code underlying the main extension. For more info see [the testing guide](../testing-guide/README.md) - The Performance App - Used to get general timing of an interactive session. See [the testing guide](../testing-guide/README.md) for how to run. ## Project File Structure Some self-explanatory directories have been ommitted. - `apps` - Tools that use the extensions, such as the performance testing app, but are not themselves extensions - `docker` - Docker configuration for AlmaLinux 8 CI builds - `exts` - This is where extension code is kept. The file structure follows the pattern: ``` exts └── dot.separated.name β”œβ”€β”€ bin β”‚ β”œβ”€β”€ libdot.separated.name.plugin.so └── dot └── separated └── name └── codeNeededByExtension └── __init__.py └── extension.py ``` - `genStubs.*`- auto-generates stub files for python bindings, which are not functionally required but greatly improve intellisense. - `src`/`include` - There are several `src`/`include` subdirs throughout the project, but this top level one is only for code used in the python bindings for the main extension. - `regenerate_schema.*` - changes to our usd schema require using this script. - `scripts` - useful scripts for development that do not contribute to any extension function. - `tests` - c++ related test code used by the Tests Extension. For python related test code, check `exts/cesium.omniverse/cesium/omniverse/tests`. For more details, see the [testing guide](../testing-guide/README.md)
2,623
Markdown
61.476189
228
0.722074
CesiumGS/cesium-omniverse/docs/release-guide/README.md
# Releasing a new version of Cesium for Omniverse This is the process we follow when releasing a new version of Cesium for Omniverse on GitHub. 1. [Release a new version of Cesium for Omniverse Samples](#releasing-a-new-version-of-cesium-for-omniverse-samples). 2. Make sure the latest commit in `main` is passing CI. 3. Download the latest build from S3. In the AWS management console (InternalServices AWS account), go to the bucket [`cesium-builds/cesium-omniverse/main`](https://s3.console.aws.amazon.com/s3/buckets/cesium-builds?region=us-east-1&prefix=cesium-omniverse/main/&showversions=false), find the appropriate date and commit hash to download the AlmaLinux and Windows zip files (e.g. `CesiumGS-cesium-omniverse-linux-x86_64-xxxxxxx.zip` and `CesiumGS-cesium-omniverse-windows-x86_64-xxxxxxx.zip`) 4. Verify that the Linux package loads in USD Composer (see instructions below). 5. Verify that the Windows package loads in USD Composer (see instructions below). 6. Update the project `VERSION` in [CMakeLists.txt](../../CMakeLists.txt). 7. Update the extension `version` in [cesium.omniverse/config/extension.toml](../../exts/cesium.omniverse/config/extension.toml). This should be the same version as above. 8. If any changes have been made to the Cesium USD schemas since last release: * Update the extension `version` in [cesium.usd.plugins/config/extension.toml](../../exts/cesium.usd.plugins/config/extension.toml) * Update the `cesium.usd.plugins` dependency version in [cesium.omniverse/config/extension.toml](../../exts/cesium.omniverse/config/extension.toml) 9. Update [`CHANGES.md`](../../CHANGES.md). 10. Update `ION_ACCESS_TOKEN` in [`extension.py`](../../apps/exts/cesium.performance.app/cesium/performance/app/extension.py) within `cesium.performance.app` using the newly generated keys. 11. Create a branch, e.g. `git checkout -b release-0.0.0`. 12. Commit the changes, e.g. `git commit -am "0.0.0 release"`. 13. Push the commit, e.g. `git push origin release-0.0.0`. 14. Open a PR and merge the branch with "Rebase and merge". 15. Tag the release, e.g. `git tag -a v0.0.0 -m "0.0.0 release"`. 16. Push the tag, e.g. `git push origin v0.0.0`. 17. Wait for CI to pass. 18. Download the latest build from S3. In the AWS management console (InternalServices AWS account), go to the bucket [`cesium-builds/cesium-omniverse`](https://s3.console.aws.amazon.com/s3/buckets/cesium-builds?prefix=cesium-omniverse/&region=us-east-1), find the folder with the new tag and download the AlmaLinux and Windows zip files (e.g. `CesiumGS-cesium-omniverse-linux-x86_64-v0.0.0.zip` and `CesiumGS-cesium-omniverse-windows-x86_64-v0.0.0.zip` ) 19. Create a new release on GitHub: https://github.com/CesiumGS/cesium-omniverse/releases/new. * Chose the new tag. * Copy the changelog into the description. Follow the format used in previous releases. * Upload the Linux and Windows release zip files. # Releasing a new version of Cesium for Omniverse Samples 1. Create a new access token using the CesiumJS ion account. * The name of the token should match "Cesium for Omniverse Samples vX.X.X - Delete on April 1st, 2023" where the version is the same as the Cesium for Omniverse release and the expiry date is two months later than present. * The scope of the token should be "assets:read" for all assets. 2. Replace the `cesium:projectDefaultIonAccessToken` property in each `.usda` file with the new access token. 3. Verify that all the USD files load in Cesium for Omniverse. 4. Update `CHANGES.md`. 5. Commit the changes, e.g. `git commit -am "0.0.0 release"`. 6. Push the commit, e.g. `git push origin main`. 7. Tag the release, e.g. `git tag -a v0.0.0 -m "0.0.0 release"`. 8. Push the tag, e.g. `git push origin v0.0.0`. 9. Download the repo as a zip file. 10. Extract the zip file. 11. Rename the extracted folder, e.g. rename `cesium-omniverse-samples-main` to `CesiumOmniverseSamples-v0.0.0`. 12. Create a zip file of the folder 13. Create a new release on GitHub: https://github.com/CesiumGS/cesium-omniverse-samples/releases/new. * Choose the new tag. * Copy the changelog into the description. Follow the format used in previous releases. * Upload the zip file. # Verify Package After the package is built, verify that the extension loads in USD Composer: * Open USD Composer * Open the extensions window and remove Cesium for Omniverse from the list of search paths (if it exists) * Close USD Composer * Unzip the package to `$USERHOME$/Documents/Kit/Shared/exts` * Open USD Composer * Open the extensions window and enable autoload for Cesium for Omniverse * Restart USD Composer * Verify that there aren't any console errors * Verify that you can load Cesium World Terrain and OSM buildings * Delete the extensions from `$USERHOME$/Documents/Kit/Shared/exts`
4,829
Markdown
72.181817
492
0.7544
CesiumGS/cesium-omniverse/docs/release-guide/push-docker-image.md
# Pushing the Docker Image for AlmaLinux 8 builds. We use a docker image for our AlmaLinux 8 builds that contains all of our build dependencies, so we don't have to build the image from scratch on each build. This document outlines how to build and push this to Docker Hub. ## Installing Docker Install [Docker Desktop](https://docs.docker.com/desktop/install/ubuntu/). You will need a license for this and access to our account. On Linux, docker is run as root. To avoid the requirement for `sudo`, you should add your user to the `docker` group: ```shell sudo usermod -aG docker $USER ``` To use the new group membership without logging out of your session completely, you can "relogin" in the same shell by typing: ```shell su - $USER ``` Note: this creates a new login shell and may behave differently from your expectations in a windowed environment e.g., GNOME. In particular, `ssh` logins and `git` may not work anymore. ## Building the container Confirm that you have push access to the [container repo](https://hub.docker.com/r/cesiumgs/omniverse-almalinux8-build). ### Log in Log into docker using: ```shell docker login ``` ### Build the docker image After making your changes to the docker file, execute: ```shell docker build --tag cesiumgs/omniverse-almalinux8-build:$TAGNAME -f docker/AlmaLinux8.Dockerfile . --no-cache ``` You should replace `TAGNAME` with the current date in `YYYY-MM-DD` format. So if it's the 29th of August, 2023, you would use `2023-08-29`. ### Push the image to Docker Hub The build will take some time. Once it is finished, execute the following to push the image to Docker Hub: ```shell docker push cesiumgs/omniverse-almalinux8-build:$TAGNAME ``` Again, you should replace `$TAGNAME` with the current date in `YYYY-MM-DD` format. So if it's the 29th of August, 2023, you would use `2023-08-29`. ### Update CI.Dockerfile The `docker/CI.Dockerfile` file is used as part of the AlmaLinux 8 build step in our GitHub actions. You will need to update the version of the Docker image used to the tagged version you just uploaded.
2,087
Markdown
33.799999
222
0.752276
CesiumGS/cesium-omniverse/docs/testing-guide/README.md
# Testing Guide ## Performance Test App Provides some general metrics for how long it takes to load tiles. Can be run with: ```bash extern/nvidia/_build/target-deps/kit-sdk/kit ./apps/cesium.performance.kit ``` The is intentionally no vs code launch configuration out of concern that debug related setting could slow the app down. ## Python Tests Python tests are run through `pytest` (see full documentation [here](https://docs.pytest.org/en/latest/)). To run these tests with the proper sourcing and environment, simpy run: ```bash scripts/run_python_unit_tests.(bat|sh) ``` You can also run these tests via the app. Open the extensions window while running omniverse. Find and select the Cesium for Omniverse Extension, then navigate to its Tests tab. The "Run Extension Tests" button will run the python tests (not the C++ tests). ## C++ Tests (The Tests Extension) C++ tests are run through `doctest`, which is set up and run via the Tests Extension. Normally `doctest` can be run via the command line, but since much of the code we test can only run properly inside omniverse, we run the tests there too. The easiest way to run the tests extension is via the launch configuration in vs code. Simply go to the `run and debug` dropdown and launch the `Tests Extension`. The testing output is provided in the terminal used to launch everything. Failed tests will be caught by the debugger, though you may need to go one level up in the execution stack to see the `CHECK` being called. To run the extension via the command line, simply pass the tests extension's kit config file to kit with ```bash extern/nvidia/_build/target-deps/kit-sdk/kit ./apps/cesium.omniverse.cpp.tests.runner.kit ``` [doctest documentation](https://bit.ly/doctest-docs) can be found here. ## How do I add a new test? ### Python `pytest` will auto-discover functions matching the pattern `test_.*` (and other patterns). If you want your tests to be included in the tests for the main extension, import it into `exts/cesium.omniverse/cesium/omniverse/tests/__init__.py`. See [extension_test.py](../../exts/cesium.omniverse/cesium/omniverse/tests/extension_test.py) for an example ### C++ `TEST_SUITE`s and `TEST_CASE`s defined in `tests/src/*.cpp` will be auto-discovered by the `run_all_tests` function in `tests/src/CesiumOmniverseCppTests.cpp`. These macros perform some automagic function definitions, so they are best left outside of other function/class definitions. See `tests/src/ExampleTests.cpp` for examples of basic tests and more advanced use cases, such as using a config file to define expected outputs or parameterizing tests. To create a new set of tests for a class that doesn't already have a relevant tests cpp file, say `myCesiumClass.cpp`: - create `tests/src/myCesiumClassTests.cpp` and `tests/include/myCesiumClassTests.h` - define any setup and cleanup required for the tests in functions in `myCesiumClassTests.cpp`. This can be anything that has to happen on a different frame than the tests, such as prim creation or removal. - expose the setup and cleanup functions in `myCesiumClassTests.h` - call the setup in `setUpTests()` in `tests/src/CesiumOmniverseCppTests.cpp` - call the cleanup in `cleanUpAfterTests()` in `tests/src/CesiumOmniverseCppTests.cpp` - define a `TEST_SUITE` in `myCesiumClassTests.cpp`, and place your `TEST_CASE`(s) in it Any tests defined in the new test suite will be auto-discovered and run when `runAllTests()` (bound to `run_all_tests()`) is called. Classes that do not require setup/cleanup can skip the header and any steps related to setup/cleanup functions.
3,606
Markdown
71.139999
405
0.773156
CesiumGS/cesium-omniverse/docs/developer-setup/README.md
<!-- omit in toc --> # Cesium for Omniverse - [Prerequisites](#prerequisites) - [Linux](#linux) - [Windows](#windows) - [Clone the repository](#clone-the-repository) - [Build](#build) - [Linux](#linux-1) - [Windows](#windows-1) - [Docker](#docker) - [Advanced build options](#advanced-build-options) - [Unit Tests](#unit-tests) - [Coverage](#coverage) - [Documentation](#documentation) - [Installing](#installing) - [Tracing](#tracing) - [Sanitizers](#sanitizers) - [Formatting](#formatting) - [Linting](#linting) - [Packaging](#packaging) - [Build Linux Package (Local)](#build-linux-package-local) - [Build Windows Package (Local)](#build-windows-package-local) - [VSCode](#vscode) - [Workspaces](#workspaces) - [Tasks](#tasks) - [Launching/Debugging](#launchingdebugging) - [Project Structure](#project-structure) - [Third Party Libraries](#third-party-libraries) - [Overriding Packman Libraries](#overriding-packman-libraries) ## Prerequisites See [Linux](#linux) or [Windows](#windows) for step-by-step installation instructions - Linux (Ubuntu 22.04+ or equivalent) or Windows - Clang 15+, GCC 9+, or Visual Studio 2022+ - Python 3.10+ - For Conan and scripts - CMake 3.22+ - Build system generator - Make - Build system (Linux only) - Conan - Third party C++ library management - gcovr - Code coverage (Linux only) - Doxygen - Documentation - clang-format - Code formatting - clang-tidy - Linting and static code analysis (Linux only) ### Linux - Ensure the correct NVIDIA drivers are installed (not the default open source driver) and that the GPU can be identified ```sh nvidia-smi ``` - Install dependencies (for Ubuntu 22.04 - other Linux distributions should be similar) ```sh sudo apt install -y gcc-9 g++-9 clang-15 python3 python3-pip cmake make git doxygen clang-format-15 clang-tidy-15 clangd-15 gcovr ``` - Install Conan with pip because Conan is not in Ubuntu's package manager ```sh sudo pip3 install conan==1.64.0 ``` - Install `cmake-format` ```sh sudo pip3 install cmake-format ``` - Install `black` and `flake8` ```sh pip3 install black==23.1.0 flake8==6.0.0 ``` - Add symlinks the clang-15 tools so that the correct version is chosen when running `clang-format`, `clang-tidy`, etc ```sh sudo ln -s /usr/bin/clang-15 /usr/bin/clang sudo ln -s /usr/bin/clang++-15 /usr/bin/clang++ sudo ln -s /usr/bin/clang-format-15 /usr/bin/clang-format sudo ln -s /usr/bin/clang-tidy-15 /usr/bin/clang-tidy sudo ln -s /usr/bin/run-clang-tidy-15 /usr/bin/run-clang-tidy sudo ln -s /usr/bin/llvm-cov-15 /usr/bin/llvm-cov sudo ln -s /usr/bin/clangd-15 /usr/bin/clangd ``` - Or, you can use the `update-alternatives` program to create the links and manage versions. This is an approach you can use in a script or on the command line: ```sh clangprogs="/usr/bin/clang*-15 /usr/bin/run-clang-tidy-15 /usr/bin/llvm-cov-15" for prog in $clangprogs do linked=${prog%%-15} generic=${linked##*/} update-alternatives --install $linked $generic $prog 15 done ``` - Then refresh the shell so that newly added dependencies are available in the path. ```sh exec bash ``` ### Windows There are two ways to install prerequisites for Windows, [manually](#install-manually) or [with Chocolatey](#install-with-chocolatey). Chocolately is quicker to set up but may conflict with existing installations. We use Chocolatey for CI. <!-- omit in toc --> #### Install manually - Install Visual Studio 2022 Professional: https://visualstudio.microsoft.com/downloads/ - Select `Desktop Development with C++` and use the default components - Install Git: https://git-scm.com/downloads - Use defaults - Install LLVM 15.0.7: https://llvm.org/builds - When prompted, select `Add LLVM to the system PATH for all users` - Install CMake: https://cmake.org/download - When prompted, select `Add CMake to the system PATH for all users` - Install Python (version 3.x): https://www.python.org/downloads - Select `Add Python 3.x to PATH` - Create a symbolic link called `python3.exe` that points to the actual `python` (version 3.x) executable. This is necessary for some of the scripts to run correctly when `#!/usr/bin/env python3` is at the top of the file. Open Command Prompt as administrator and enter: ```sh where python cd <first_path_in_list> mklink python3.exe python.exe ``` - Install `requests` module for Python ```sh pip3 install requests ``` - Install `cmake-format` ```sh pip3 install cmake-format ``` - Install `black` and `flake8` ```sh pip3 install black==23.1.0 flake8==6.0.0 ``` - Install `colorama` to enable color diff support ```sh pip3 install colorama ``` - Install Conan ```sh pip3 install conan==1.64.0 ``` - Install Doxygen: https://www.doxygen.nl/download.html - After installation, add the install location to your `PATH`. Open PowerShell as administrator and enter: ```sh [Environment]::SetEnvironmentVariable("Path", $env:Path + ";C:\Program Files\doxygen\bin", "Machine") ``` - Enable Long Paths. This ensures that all Conan libraries are installed in `~/.conan`. Open PowerShell as administrator and enter: ```sh New-ItemProperty -Path "HKLM:\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1 -PropertyType DWORD -Force ``` - Then refresh PowerShell so that newly added dependencies are available in the path. ```sh refreshenv ``` <!-- omit in toc --> #### Install with Chocolatey - Install [Chocolatey](https://docs.chocolatey.org/en-us/choco/setup) and then install dependencies ```sh choco install -y visualstudio2022professional visualstudio2022-workload-nativedesktop python cmake ninja git doxygen.install vswhere --installargs 'ADD_CMAKE_TO_PATH=System' ``` ```sh choco install -y llvm --version=15.0.7 ``` ```sh choco install -y conan --version 1.64.0 ``` > **Note:** If you see a warning like `Chocolatey detected you are not running from an elevated command shell`, reopen Command Prompt as administrator - Create a symbolic link called `python3.exe` that points to the actual `python` (version 3.x) executable. This is necessary for some of the scripts to run correctly when `#!/usr/bin/env python3` is at the top of the file. ```sh where python cd <first_path_in_list> mklink python3.exe python.exe ``` - Install `requests` ```sh pip3 install requests ``` - Install `cmake-format` ```sh pip3 install cmake-format ``` - Install `black` and `flake8` ```sh pip3 install black==23.1.0 flake8==6.0.0 ``` - Install `colorama` to enable color diff support ```sh pip3 install colorama ``` - Enable Long Paths. This ensures that all Conan libraries are installed correctly. Open PowerShell as administrator and enter: ```sh New-ItemProperty -Path "HKLM:\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1 -PropertyType DWORD -Force ``` - Then refresh PowerShell so that newly added dependencies are available in the path. ```sh refreshenv ``` ## Clone the repository ```sh git clone [email protected]:CesiumGS/cesium-omniverse.git --recurse-submodules ``` If you forget the `--recurse-submodules`, nothing will work because the Git submodules will be missing. You should be able to fix it with ```sh git submodule update --init --recursive ``` ## Build ### Linux ```sh ## Release cmake -B build cmake --build build --target install --parallel 8 ## Debug cmake -B build-debug -D CMAKE_BUILD_TYPE=Debug cmake --build build-debug --target install --parallel 8 ``` Binaries will be written to `build/bin`. Shared libraries and static libraries will be written to `build/lib`. ### Windows ```sh ## Release cmake -B build cmake --build build --config Release --target install --parallel 8 ## Debug cmake -B build cmake --build build --config Debug --target install --parallel 8 ``` Binaries and shared libraries will be written to `build/bin/Release`. Static libraries and python modules will be written to `build/lib/Release`. CMake will select the most recent version of Visual Studio on your system unless overridden with a generator (e.g. `-G "Visual Studio 17 2022"`). ### Docker Install [Docker Engine CE For Ubuntu](https://docs.docker.com/engine/install/ubuntu/) Enter the container: ```sh docker build --tag cesiumgs/cesium-omniverse:almalinux8 -f docker/AlmaLinux8.Dockerfile . docker run --rm --interactive --tty --volume $PWD:/var/app cesiumgs/cesium-omniverse:almalinux8 ``` Once inside the container, build like usual. Note that linters are turned off. It won't affect the build, it just means there won't be code formatting or linting. It will build fine with GCC. ```sh cmake -B build -D CESIUM_OMNI_ENABLE_LINTERS=OFF cmake --build build ``` ### Advanced build options For faster builds, use the `--parallel` option ```sh cmake -B build cmake --build build --parallel 8 ``` To use a specific C/C++ compiler, set `CMAKE_CXX_COMPILER` and `CMAKE_C_COMPILER` ```sh cmake -B build -D CMAKE_CXX_COMPILER=clang++-15 -D CMAKE_C_COMPILER=clang-15 cmake --build build ``` Make sure to use a different build folder for each compiler, otherwise you may see an error from Conan like ``` Library [name] not found in package, might be system one. ``` This error can also be avoided by deleting `build/CMakeCache.txt` before switching compilers. To view verbose output from the compiler, use the `--verbose` option ```sh cmake -B build cmake --build build --verbose ``` To change the build configuration, set `CMAKE_BUILD_TYPE` to one of the following values: - `Debug`: Required for coverage - `Release`: Used for production builds - `RelWithDebInfo`: Similar to `Release` but has debug symbols - `MinSizeRel`: Similar to `Release` but smaller compile size On Linux ```sh cmake -B build-relwithdebinfo -D CMAKE_BUILD_TYPE=RelWithDebInfo cmake --build build-relwithdebinfo ``` On Windows ```sh cmake -B build cmake --build build --config RelWithDebInfo ``` Note that Windows (MSVC) is a multi-configuration generator meaning all four build configurations are created during the configure step and the specific configuration is chosen during the build step. If using Visual Studio there will be a dropdown to select the build configuration. Ninja is also supported as an alternative to the MSVC generator. To build with Ninja locally open `x64 Native Tools Command Prompt for VS 2022` and run: ``` cmake -B build -D CMAKE_C_COMPILER=cl -D CMAKE_CXX_COMPILER=cl -G "Ninja Multi-Config" cmake --build build --config Release --parallel 8 ``` ## Unit Tests Unit tests can be run by starting the Cesium Omniverse Tests extension inside Omniverse. ## Coverage It's a good idea to generate code coverage frequently to ensure that you're adequately testing new features. To do so run ```sh cmake -B build-debug -D CMAKE_BUILD_TYPE=Debug cmake --build build-debug --target generate-coverage ``` Once finished, the coverage report will be located at `build-debug/coverage/index.html`. Notes: - Coverage is disabled in `Release` mode because it would be inaccurate and we don't want coverage instrumentation in our release binaries anyway - Coverage is not supported on Windows ## Documentation ```sh cmake -B build cmake --build build --target generate-documentation ``` Once finished, documentation will be located at `build/docs/html/index.html`. ## Installing To install `CesiumOmniverse` into the Omniverse Kit extension run: ```sh cmake -B build cmake --build build --target install ``` This will install the libraries to `exts/cesium.omniverse/bin`. <!-- omit in toc --> ### Advanced Install Instructions In some cases it's helpful to produce a self-contained build that can be tested outside of Omniverse. The instructions below are intended for debugging purposes only. To install `CesiumOmniverse` onto the local system run: On Linux ```sh cmake -B build cmake --build build cmake --install build --component library --prefix /path/to/install/location ``` On Windows ```sh cmake -B build cmake --build build --config Release cmake --install build --config Release --component library --prefix /path/to/install/location ``` ## Tracing To enable performance tracing set `CESIUM_OMNI_ENABLE_TRACING`: ```sh cmake -B build -D CESIUM_OMNI_ENABLE_TRACING=ON cmake --build build ``` A file called `cesium-trace-xxxxxxxxxxx.json` will be saved to the `exts/cesium-omniverse` folder when the program exits. This file can then be inspected in `chrome://tracing/`. Note that the JSON output may get truncated if the program closes unexpectedly - e.g. when the debugging session is stopped or the program crashes - or if `app.fastShutdown` is `true` (like with Omniverse Create and `cesium.omniverse.dev.kit`). Therefore the best workflow for performance tracing is to run `cesium.omniverse.dev.trace.kit` and close the window normally. ## Sanitizers When sanitizers are enabled they will check for mistakes that are difficult to catch at compile time, such as reading past the end of an array or dereferencing a null pointer. Sanitizers should not be used for production builds because they inject these checks into the binaries themselves, creating some runtime overhead. Sanitizers - ASAN - [Address sanitizer](https://clang.llvm.org/docs/AddressSanitizer.html) - UBSAN - [Undefined behavior sanitizer](https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html) > **Note:** memory leak detection is not supported on Windows currently. See https://github.com/google/sanitizers/issues/1026#issuecomment-850404983 > **Note:** memory leak detection does not work while debugging with gdb. See https://stackoverflow.com/questions/54022889/leaksanitizer-not-working-under-gdb-in-ubuntu-18-04 To verify that sanitization is working, add the following code to any cpp file. ```c++ int arr[4] = {0}; arr[argc + 1000] = 0; ``` After running, it should print something like ``` main.cpp:114:22: runtime error: index 1001 out of bounds for type 'int [4]' main.cpp:114:24: runtime error: store to address 0x7ffe16f44c44 with insufficient space for an object of type 'int' 0x7ffe16f44c44: note: pointer points here 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ^ ``` ## Formatting To format code based on the [`.clang-format`](./.clang-format) configuration file ```sh cmake -B build cmake --build build --target clang-format-fix-all ``` The full list of targets is below: - `clang-format-fix-all` - Formats all code - `clang-format-fix-staged` - Formats staged code - `clang-format-check-all` - Checks for formatting problems in all code - `clang-format-check-staged` - Checks for formatting problems in staged code Please note that the `clang-format-fix-all` and `clang-format-fix-staged` targets will add fixes in the working area, not in the staging area. We also have a Git hook that is installed on project configuration that will check if the staging area is properly formatted before permitting a commit. ## Linting `clang-tidy` is run during the build to catch common coding errors. `clang-tidy` is used for linting and static code analysis based on the [`.clang-tidy`](./.clang-tidy) configuration file. We also generate CMake targets to run these tools manually Run `clang-tidy`: ```sh cmake -B build cmake --build build --target clang-tidy ``` ## Packaging ### Build Linux Package (Local) Linux packages are built in the AlmaLinux 8 Docker container. A Red Hat Enterprise Linux 8 compatible OS is the [minimum OS required by Omniverse](https://docs.omniverse.nvidia.com/app_view/common/technical-requirements.html#suggested-minimums-by-product) and uses glibc 2.18 which is compatible with nearly all modern Linux distributions. It's recommended to build AlmaLinux 8 packages in a separate clone of cesium-omniverse since the Docker container will overwrite files in the `extern/nvidia/_build` and `exts` folders. Run the following shell script from the root cesium-omniverse directory: ```sh ./scripts/build_package_almalinux8.sh ``` The resulting `.zip` file will be written to the `build-package` directory (e.g. `CesiumGS-cesium-omniverse-linux-x86_64-v0.0.0.zip`) ### Build Windows Package (Local) Run the following batch script from the root cesium-omniverse directory: ```sh ./scripts/build_package_windows.bat ``` The resulting `.zip` file will be written to the `build-package` directory (e.g. `CesiumGS-cesium-omniverse-windows-x86_64-v0.0.0.zip`) ## VSCode We use VSCode as our primary IDE for development. While everything can be done on the command line the `.vscode` project folder has built-in tasks for building, running unit tests, generating documentation, etc. ### Workspaces Each workspace contains recommended extensions and settings for VSCode development. Make sure to open the workspace for your OS instead of opening the `cesium-omniverse` folder directly. - [cesium-omniverse-linux.code-workspace](./.vscode/cesium-omniverse-linux.code-workspace) - [cesium-omniverse-windows.code-workspace](./.vscode/cesium-omniverse-windows.code-workspace) ### Tasks [`.vscode/tasks.json`](./.vscode/tasks.json) comes with the following tasks: - Configure - configures the project - Build (advanced) - configures and builds the project - Build (tracing) - configures and builds the project with tracing enabled - Build (kit debug) - configures and builds the project using NVIDIA debug libraries - Build (verbose) - configures and builds the project with verbose output - Build (debug) - configures and builds the project in debug mode with the default compiler - Build (release) - configures and builds the project in release mode with the default compiler - Build Only (debug) - builds the project in debug mode with the default compiler - Build Only (release) - builds the project in release mode with the default compiler - Clean - cleans the build directory - Coverage - generates a coverage report and opens a web browser showing the results - Documentation - generates documentation and opens a web browser showing the results - Format - formats the code with clang-format - Lint - runs clang-tidy - Lint Fix - runs clang-tidy and fixes issues - Dependency Graph - shows the third party library dependency graph To run a task: - `Ctrl + Shift + B` and select the task, e.g. `Build` - Select the build type and compiler (if applicable) ### Launching/Debugging Windows and Linux versions of `launch.json` are provided in the `.vscode` folder. * On Windows copy `launch.windows.json` and rename it to `launch.json`. * On Linux copy `launch.linux.json` and rename it to `launch.json`. Alternatively, create a symlink so that `launch.json` always stays up-to-date: ```sh # Windows - Command Prompt As Administrator cd .vscode mklink launch.json launch.windows.json ``` ```sh # Linux cd .vscode sudo ln -s launch.linux.json launch.json ``` Then select a configuration from the `Run and Debug` panel, such as `Kit App`, and click the green arrow. > **Note:** Most configurations run a build-only prelaunch task. This assumes the project has already been configured. When debugging for the first time make sure to configure the project first by pressing `Ctrl + Shift + B` and running `Build (debug)`. > **Note:** For running the `Performance Tracing` configuration, make sure the project has been configured with tracing enabled by pressing `Ctrl + Shift + B` and running `Build (tracing)`. > **Note:** For running the `Development App (Kit Debug)` configuration make sure the project has been built with NVIDIA debug libraries by pressing `Ctrl + Shift + B` and running `Build (kit debug)`. > **Note:** For Python debugging, first run `Python Debugging (start)`, then wait for Omniverse to load, then run `Python Debugging (attach)`. Now you can set breakpoints in both the C++ and Python code. <!-- omit in toc --> #### Launch/Debug Troubleshooting - When running in debug within vscode, if you find execution halting at a breakpoint outside the cesium codebase, you may need to uncheck "C++: on throw" under the "Breakpoints" section of the "Run and Debug" panel. - On Linux, if you are given an error or warning about IOMMU, you may need to turn this off in the BIOS. IOMMU also goes by the name of Intel VT-d and AMD-Vi. - On Linux, if repeated `"[Omniverse app]" is not responding` prompts to either force quit or wait, you may want to extend the global timeout for such events from the default 5s to 30s with the following command (for gnome): ```sh gsettings set org.gnome.mutter check-alive-timeout 30000 ``` ## Project Structure - `src` - Source code for the CesiumOmniverse library - `include` - Include directory for the CesiumOmniverse library - `tests` - Unit tests - `extern` - Third-party dependencies that aren't on Conan - `cmake` - CMake helper files - `scripts` - Build scripts and Git hooks - `docker` - Docker files ## Third Party Libraries We use [Conan](https://conan.io/) as our C++ third party package manager for dependencies that are public and not changed often. Third party libraries are always built from source and are cached on the local system for subsequent builds. To add a new dependency to Conan - Add it to [AddConanDependencies.cmake](./cmake/AddConanDependencies.cmake) - Call `find_package` in [CMakeLists.txt](./CMakeLists.txt) - Add the library to the `LIBRARIES` field in any relevant `setup_lib` or `setup_app` calls Some dependencies are pulled in as Git submodules instead. When adding a new git submodule add the license to [ThirdParty.extra.json](./ThirdParty.extra.json). [ThirdParty.json](./ThirdParty.json) is autogenerated and combines [ThirdParty.extra.json](./ThirdParty.extra.json) and Conan dependencies. ### Overriding Packman Libraries The external dependencies from Nvidia use Nvidia's packman tool to fetch and install. The dependency files are found at `/extern/nvidia/deps` in this repository. You can override these by using a `*.packman.xml.user` file. For example, to override the version of kit you can create a user file called `kit-sdk.packman.xml.user` next to `kit-sdk.packman.xml` in the `deps` directory. You can then use standard packman configurations within this file, such as: ```xml <project toolsVersion="5.6"> <dependency name="kit_sdk" linkPath="../_build/target-deps/kit-sdk/"> <package name="kit-sdk" version="105.0.1+release.109439.ed961c5c.tc.${platform}.release"/> </dependency> <dependency name="kit_sdk_debug" linkPath="../_build/target-deps/kit-sdk-debug/"> <package name="kit-sdk" version="105.0.1+release.109439.ed961c5c.tc.${platform}.debug"/> </dependency> </project> ``` The above configuration would override the version of the Kit SDK used to `105.0.1+release.109439.ed961c5c.tc`. These user files are ignored by the `.gitignore` so it is safe to test out prerelease and private versions of new libraries.
22,960
Markdown
36.952066
458
0.740026
CesiumGS/cesium-omniverse/docs/developer-setup/building_usd_on_ubuntu2204.md
# Building Pixar's USD 22.11 for Ubuntu 22.04 _Last Updated: 2022/01/12_ Building Pixar's USD 22.11 on Ubuntu 22.04 can be difficult. This guide aims to help those who wish to download and compile USD on their system. For most people, [using the Nvidia binaries should suffice and is the recommended option](https://developer.nvidia.com/usd). If those do not work for you, or you wish to have a self-compiled version, this guide is for you. ## Prerequisites You need: - Python 3.7 from the Deadsnakes PPA: https://launchpad.net/~deadsnakes/+archive/ubuntu/ppa - GCC 11 - Cmake - USD downloaded from the GitHub repository: https://github.com/PixarAnimationStudios/USD ## Python Setup As of writing, USD targets Python 3.7. On Ubuntu you need to use the [Deadsnakes PPA](https://launchpad.net/~deadsnakes/+archive/ubuntu/ppa) to get this. You need the following packages: - python3.7 - python3.7-dev - libpython3.7 - libpython3.7-dev Once you have Python 3.7, you need to install `PyOpenGL` and `PySide2`. **You cannot use your normal system `pip` command for this!** The correct command is: ```shell python3.7 -m pip install PyOpenGL PySide2 ``` ## Fixing Boost USD currently targets Boost 1.70 on Linux, which has issues compiling on Ubuntu 22.04. USD supports up to Boost 1.76 on account of issues in MacOS. We can use this to our advantage. Apply the below patchfile to the repository to fix this. ``` diff --git a/build_scripts/build_usd.py b/build_scripts/build_usd.py index 5d3861d0a..96dd1c0a4 100644 --- a/build_scripts/build_usd.py +++ b/build_scripts/build_usd.py @@ -695,7 +695,7 @@ if MacOS(): BOOST_URL = "https://boostorg.jfrog.io/artifactory/main/release/1.76.0/source/boost_1_76_0.tar.gz" BOOST_VERSION_FILE = "include/boost/version.hpp" elif Linux(): - BOOST_URL = "https://boostorg.jfrog.io/artifactory/main/release/1.70.0/source/boost_1_70_0.tar.gz" + BOOST_URL = "https://boostorg.jfrog.io/artifactory/main/release/1.76.0/source/boost_1_76_0.tar.gz" BOOST_VERSION_FILE = "include/boost/version.hpp" elif Windows(): # The default installation of boost on Windows puts headers in a versioned ``` ## Building USD **NOTE: At this time, only a limited number of install options have been tested. YMMV.** We can use the USD build scripts to build USD as we normally would, but we need to provide some additional options for Python for this to work correctly. If you just need to quickly get this built, use the following command from the USD repository's directory. It builds the USD and the tools including `usdview`, placing them in `~/.local/USD`. If you want to learn more, read on below. ```shell python3.7m build_scripts/build_usd.py ~/.local/USD \ --tools \ --usd-imaging \ --usdview \ --build-python-info /usr/bin/python3.7m /usr/include/python3.7m /usr/lib/python3.7/config-3.7m-x86_64-linux-gnu/libpython3.7m.so 3.7 ``` The important line here is the `--build-python-info` line. This takes, in order, the Python executable, include directory, library, and version. Using the Deadsnakes PPA, these are: - `PYTHON_EXECUTABLE` : `/usr/bin/python3.7m` - `PYTHON_INCLUDE_DIR` : `/usr/include/python3.7m` - `PYTHON_LIBRARY` : `/usr/lib/python3.7/config-3.7m-x86_64-linux-gnu/libpython3.7m.so` - `PYTHON_VERSION` : `3.7` Do note that we are using the `pymalloc` versions of Python. The Deadsnakes PPA version of Python 3.7 is compiled using `pymalloc` and `/usr/bin/python3.7` simply symlinks to `/usr/bin/python3.7m`. You could use the symlinks, but there is **NOT** a symlink for `libpython3.7m.so`, so you need to at least provide the direct path to that. ## Afterword There are a lot of other options for building USD. If you use the command `python3.7m build_scripts/build_usd.py --help` you can get a list of all these commands. Your mileage may vary with compiling these other features.
3,871
Markdown
49.285714
387
0.738827
CesiumGS/cesium-omniverse/docs/connectors/README.md
# Connectors Helpful guides for setting up various connectors with Omniverse. - [SketchUp Connector](./sketchup/README.md)
125
Markdown
19.999997
64
0.784
CesiumGS/cesium-omniverse/docs/connectors/sketchup/README.md
Introduction ============ This documentation is designed as a supplement guide for the [official Nvidia documentation on the SketchUp Connector](https://docs.omniverse.nvidia.com/con_connect/con_connect/sketchup.html) for Omniverse. While there are some intersections, the primary goal of this documentation is to get someone new to SketchUp, Omniverse, and Cesium for Omniverse up and running quickly. It is strongly advised that the reader take the time to [review the entire official documentation fully](https://docs.omniverse.nvidia.com/con_connect/con_connect/sketchup.html). Installing Omniverse Connector for SketchUp =========================================== Installing the connector can be done through the Exchange Tab in the Omniverse Launcher. The connector requires a SketchUp Pro license. More details can be found in the [Installing the Connector](https://docs.omniverse.nvidia.com/con_connect/con_connect/sketchup.html#installing-the-connector) section of the official docs. Instructions ------------ 1. Ensure that SketchUp is closed. 2. Navigate to the Exchange Tab 3. Search for "SketchUp" 4. Click on "Trimble SketchUp Omniverse Connector" 5. Click Install Using Omniverse Connector for SketchUp ====================================== **NOTE:** The [official documentation](https://docs.omniverse.nvidia.com/con_connect/con_connect/sketchup.html#connecting-to-view-local) has a section on connecting locally to Omniverse for editing. This section in the official guide is slightly out of date and does not contain details about working with Nucleus at the time of writing, but is worth a read before continuing further. The Omniverse Toolbar --------------------- Once installed and in a project, the Omniverse Toolbar can be dragged to the toolbar area. The diagram below describes all of the functions. ![Omniverse Toolbar](resources/sketchup_toolbar.jpg) Configuring SketchUp for Omniverse with Nucleus ----------------------------------------------- Once you have started a new project with the correct scale for your needs, you will need to ensure that the settings are properly configured for your Nucleus server. The "Do Not Use Nucleus" checkbox **must be unchecked** for Live Editing with Nucleus to work. **WARNING:** Every time you start or open a new project you must go into the settings dialog and uncheck "Do Not Use Nucleus" at the time of this writing. It is unclear if this is intended or a bug. It is also recommended that *Send to locally installed Viewer* is configured to use either the latest View or Create, and *Create Send To Omniverse output as:*' has "Prop" selected. All other settings can be set to the user’s liking. ![SketchUp Settings](resources/sketchup_settings.png) Signing into Omniverse ---------------------- Click the *Sign In to Omniverse* button and enter in the host name for your Nucleus server. This will open your browser to finish the sign in process. Exporting to Nucleus -------------------- Once configured correctly, you can export to Nucleus by using either the *Publish Project* or *Publish Prop* button. *Publish Project* produces a `*.project.usd` file and associated directory and *Publish Prop* produces a single `*.usd` file containing the relevant information. **NOTE:** As publishing a prop is more relevant to our needs, this section only goes into further details about *Publish Prop*. Publishing a project is more or less identical steps. When the user presses the *Publish Prop* button in order to publish a new prop, a dialog appears similar to the one below. The flow for saving to Nucleus is: 1. Ensure your SketchUp project is saved. 2. Select the path you want to use in Omniverse Nucleus 3. Enter the name of the file after the path in the *File Name* field. (Extension not required.) 4. Click *Export* In this screenshot, we are saving a file named "docdemo.usd" to the Library folder within Nucleus. ![Export Dialog](resources/sketchup_export.png) **NOTE:** The *Show Publish Options* button is a quick way to open the settings dialog if you forget to open settings and uncheck *Do Not Use Nucleus* checkbox when you opened or started your project. If you are resuming work on a prop and want to properly link to Nucleus so it recieves your latest edits, simply follow the same instructions but choose the file you want in the picker. This will create a new session with Omniverse so you can continue syncing your SketchUp file with Nucleus. Failure to do so when you reopen your file will result in Nucleus not receiving the changes. Live Editing ------------ Live editing with the SketchUp Connector does work however it appears to be unidirectional in the direction of Omniverse. In order to enable Live Editing, click the *Live Sync Mode* button in the middle of the Omniverse Toolbar. This will open a dialog: ![Live Sync Dialog](resources/sketchup_live_sync.png) Once the dialog is open, ensure that the *Live Sync* checkbox is checked and Live Editing will be enabled. Once you make changes they will be automatically shared with Omniverse. **WARNING:** Do not close the Omniverse Live Sync dialog box or click the *Connect USD* button. Doing so will both clear the link you currently have with Nucleus for the file, and will end the Live Sync session. We have confirmed with Nvidia that this is intended behavior. References ========== - [Official Nvidia Omniverse Documentation](https://docs.omniverse.nvidia.com/con_connect/con_connect/sketchup.html)
5,515
Markdown
37.305555
112
0.75485
CesiumGS/cesium-omniverse/docs/kit/README.md
# So you want to programmatically change a setting in Omniverse? An optional first step is to copy the settings. The easiest way to do this is to dump them out when one of our functions in `window.py` is called. This snippet will help: ```python import json import carb.settings with open("<path to desired dump file>", "w") as fh: fh.write(json.dumps(carb.settings.get_settings().get("/"))) ``` Having these settings isn't required but it may be helpful. Once pretty printed using the JSON formatter of your choice, it can help you find file paths to help in your search, and you can take a closer look at all of the current settings. In the case of this ticket, we needed to set a setting for the RTX renderer. A quick search of the `tokens` object gives us this path: ``` c:/users/amorris/appdata/local/ov/pkg/code-2022.2.0/kit/exts/omni.rtx.settings.core ``` Perform a grep in this folder for the menu item you wish to configure programmatically. In this case, I searched for `Normal & Tangent Space Generation Mode`. That should direct you to the file where the widget is available, and you should find the following: ```python tbnMode = ["AUTO", "CPU", "GPU", "Force GPU"] self._add_setting_combo("Normal & Tangent Space Generation Mode", "/rtx/hydra/TBNFrameMode", tbnMode) ``` The most important piece here is the path `/rtx/hydra/TBNFrameMode`. This refers to the path in the settings. Once you have this, programmatically changing the setting is simple: ```python import carb.settings carb.settings.get_settings().set("/rtx/hydra/TBNFrameMode", 1) ``` If you are unsure about what the type of the value for the setting should be, I suggest checking the JSON dump of the settings. The path `/rtx/hydra/TBNFrameMode` refers to, from root, the rtx object, the child hydra object, and followed by the TBNFrameMode property within. You can also search for the property, but beware that there may be multiple that are unrelated. For example, `TBNFrameMode` has three results total, but only one is relevant to our needs.
2,038
Markdown
58.970587
462
0.760059
CesiumGS/cesium-omniverse/extern/nvidia/deps/target-deps.packman.xml
<project toolsVersion="5.6"> <!-- Import dependencies from Kit SDK to ensure we're using the same versions. --> <import path="../_build/target-deps/kit-sdk/dev/all-deps.packman.xml"> <filter include="python"/> <filter include="nv_usd_py310_release"/> <filter include="usdrt"/> <filter include="carb_sdk_plugins"/> <filter include="pybind11"/> <filter include="cuda"/> </import> <!-- Override the link paths to point to the correct locations. --> <dependency name="python" linkPath="../_build/target-deps/python"/> <dependency name="nv_usd_py310_release" linkPath="../_build/target-deps/usd/release"/> <dependency name="usdrt" linkPath="../_build/target-deps/usdrt"/> <dependency name="carb_sdk_plugins" linkPath="../_build/target-deps/carb_sdk_plugins"/> <dependency name="pybind11" linkPath="../_build/target-deps/pybind11/pybind11"/> <dependency name="cuda" linkPath="../_build/target-deps/cuda/cuda"/> </project>
960
XML
49.578945
89
0.6875
CesiumGS/cesium-omniverse/extern/nvidia/deps/kit-sdk.packman.xml
<project toolsVersion="5.6"> <dependency name="kit_sdk" linkPath="../_build/target-deps/kit-sdk/"> <package name="kit-sdk" version="105.1.2+release.135279.09b309e7.tc.${platform}.release"/> </dependency> </project>
223
XML
36.333327
94
0.690583
CesiumGS/cesium-omniverse/extern/nvidia/scripts/install.py
import os import packmanapi import sys REPO_ROOT = os.path.join(os.path.dirname(os.path.realpath(__file__)), "..") KIT_SDK_FILE = os.path.join(REPO_ROOT, "deps/kit-sdk.packman.xml") TARGET_DEPS_FILE = os.path.join(REPO_ROOT, "deps/target-deps.packman.xml") if __name__ == "__main__": platform = sys.argv[2] packmanapi.pull(KIT_SDK_FILE, platform=platform) packmanapi.pull(TARGET_DEPS_FILE, platform=platform)
424
Python
29.357141
75
0.698113
CesiumGS/cesium-omniverse/extern/nvidia/debug-deps/target-deps.packman.user.xml
<project toolsVersion="5.6"> <import path="../_build/target-deps/kit-sdk-debug/dev/all-deps.packman.xml"> <filter include="nv_usd_py310_debug"/> </import> <dependency name="nv_usd_py310_debug" linkPath="../_build/target-deps/usd/debug"/> </project>
259
XML
36.142852
84
0.687259
CesiumGS/cesium-omniverse/extern/nvidia/debug-deps/kit-sdk.packman.user.xml
<project toolsVersion="5.6"> <dependency name="kit_sdk_debug" linkPath="../_build/target-deps/kit-sdk-debug/"> <package name="kit-sdk" version="105.1.2+release.135279.09b309e7.tc.${platform}.debug"/> </dependency> </project>
233
XML
37.999994
92
0.695279
CesiumGS/cesium-omniverse-samples/CHANGES.md
### v0.19.0 - 2024-04-01 - Updates for Cesium for Omniverse v0.19.0. ### v0.18.0 - 2024-03-01 - Added samples for Raster Overlays. - Updates for Cesium for Omniverse v0.18.0. ### v0.17.0 - 2024-02-01 - Added project files for Tileset Clipping tutorial. - Updates for Cesium for Omniverse v0.17.0. ### v0.16.0 - 2024-01-02 - Added project files for Placing Objects on the Globe tutorial. - Added project files for Style by Properties tutorial. - Updates for Cesium for Omniverse v0.16.0. ### v0.15.0 - 2023-12-14 - Updates for Cesium for Omniverse v0.15.0. ### v0.14.0 - 2023-12-01 - Updates for Cesium for Omniverse v0.14.0. ### v0.13.0 - 2023-11-01 - Fixed Google Photorealistic 3D Tiles tutorial sample. - Updates for Cesium for Omniverse v0.13.0. ### v0.12.0 - 2023-10-25 - Changed Google Photorealistic 3D Tiles samples to go through Cesium ion. - Added samples for Globe Anchors. - Added samples for Tileset Clipping. - Added samples for Tileset Materials. - Updates for Cesium for Omniverse v0.12.0. ### v0.11.0 - 2023-10-02 - Updates for Cesium for Omniverse v0.11.0. ### v0.10.0 - 2023-09-01 - Updates for Cesium for Omniverse v0.10.0. ### v0.9.0 - 2023-08-01 - Added project files for dynamic skies and sun study tutorial. - Updates for Cesium for Omniverse v0.9.0. ### v0.8.0 - 2023-07-03 - Updates for Cesium for Omniverse v0.8.0. ### v0.7.0 - 2023-06-01 - Switched to RTX Real-Time renderer for Google 3D Tiles examples. - Updates for Cesium for Omniverse v0.7.0. ### v0.6.0 - 2023-05-10 - Added samples to showcase Photorealistic 3D Tiles via Google Maps Platform. - Updates for Cesium for Omniverse v0.6.0. ### v0.5.0 - 2023-05-01 - Updates for Cesium for Omniverse v0.5.0. ### v0.4.0 - 2023-04-03 - Updates for Cesium for Omniverse v0.4.0. ### v0.3.0 - 2023-03-20 - Initial release.
1,831
Markdown
21.9
77
0.700164
CesiumGS/cesium-omniverse-samples/README.md
[![Cesium for Omniverse Logo](images/Cesium_Omniverse_dark_color.png)](https://cesium.com/) # Cesium for Omniverse Samples The Cesium for Omniverse Samples contains a series of USD files to help learn and explore the [Cesium for Omniverse](https://cesium.com/platform/cesium-for-omniverse) extension. The USDs in this project will walk you through the extension's features and demonstrate global-scale content and experiences in Nvidia Omniverse USD Composer. The source code for Cesium for Omniverse itself may be found in the [cesium-omniverse](https://github.com/CesiumGS/cesium-omniverse) repo. ![Aerometrex Photogrammetry of San Francisco in Cesium for Omniverse](images/san_francisco.jpg) *<p align="center">Photogrammetry of San Francisco, California visualized in Omniverse USD Composer, using Cesium for Omniverse.<br>Open <b>examples/SanFrancisco/SanFrancisco.usd</b> in Omniverse USD Composer to experience it yourself!</p>* ### :rocket: Get Started 1. **[Download Cesium for Omniverse Samples](https://github.com/CesiumGS/cesium-omniverse-samples/releases/latest)**. 2. Extract the `.zip` file into a suitable location on your computer. 3. Follow the Quickstart tutorial to setup Cesium for Omniverse with Omniverse USD Composer. 4. Open any of the USD files within this repo to explore them. Have questions? Ask them on the [community forum](https://community.cesium.com). ## :mountain: USD Descriptions The content in this repo is split into two main folders - Examples and Tutorials. ### :one: Examples Folder The example folder contain cities built with various datasets, high quality lighting, and rendering settings optimised for real-time interaction whilst also providing high quality image and video outputs. #### Denver In Denver you'll see [Cesium World Terrain](https://cesium.com/platform/cesium-ion/content/cesium-world-terrain/) combined with photogrammetry of the city center, captured by [Aerometrex](https://aerometrex.com.au/). #### San Francisco In San Francisco you'll see [Cesium World Terrain](https://cesium.com/platform/cesium-ion/content/cesium-world-terrain/) combined with photogrammetry of the city, captured by [Aerometrex](https://aerometrex.com.au/). #### Vancouver In Vancouver you'll see [Cesium World Terrain](https://cesium.com/platform/cesium-ion/content/cesium-world-terrain/) combined with [Cesium OSM Buildings](https://cesium.com/platform/cesium-ion/content/cesium-osm-buildings/). ### :two: Tutorials Folder The tutorial folder contain USD's representing the completed steps of each tutorial found [here](https://cesium.com/learn/omniverse/). If you want to see the intended outcome of each tutorial, simply open the corresponding USD. ### :green_book:License [Apache 2.0](http://www.apache.org/licenses/LICENSE-2.0.html). Cesium for Omniverse Samples is free to use as starter project for both commercial and non-commercial use.
2,907
Markdown
58.346938
240
0.783626
boredengineering/Robots_for_Omniverse/README.md
# Robots_for_Omniverse The objective of this project is to make developing robotics an engaging and exciting experience.<br/> > OriginalAuthor:<br/> > Renan Monteiro Barbosa<br/> Please feel free to contribute with either robots in openUSD or URDF descriptions that can be converted.<br/> ## openUSD_assets List of robots converted to openUSD.<br/> ### Quadrupeds - [Boston Dynamics](https://www.bostondynamics.com/) - [Spot](https://github.com/chvmp/spot_ros) - [SpotMicroAI](https://spotmicroai.readthedocs.io/en/latest/) ### Bipedal - [Agility Robotics](https://agilityrobotics.com/) - [Digit](https://github.com/adubredu/DigitRobot.jl) - [Unitree Robotics](https://www.unitree.com/h1/) - [NJIT - TOCABI](https://github.com/cadop/tocabi) ## URDF_descriptions It contains all the robot descriptions in URDF.<br/> Below is the list of all the sources where the URDFs where obtained from.<br/> ### Quadrupeds - [kodlab_gazebo - Ghost Robotics](https://github.com/KodlabPenn/kodlab_gazebo) - [ANYbotics](https://github.com/ANYbotics) - [ANYbotics' ANYmal B](https://github.com/ANYbotics/anymal_b_simple_description) - [ANYbotics' ANYmal B - Modified for CHAMP](https://github.com/chvmp/anymal_b_simple_description) - [ANYbotics' ANYmal C](https://github.com/ANYbotics/anymal_c_simple_description) - [ANYbotics' ANYmal B - Modified for CHAMP](https://github.com/chvmp/anymal_c_simple_description) - **Boston Dynamic's Little Dog** - [Boston Dynamic's Little Dog - by RobotLocomotion](https://github.com/RobotLocomotion/LittleDog) - [Boston Dynamic's Little Dog - Modified for CHAMP](https://github.com/chvmp/littledog_description) - **Boston Dynamic's Spot** - [Boston Dynamic's Spot - by heuristicus](https://github.com/heuristicus/spot_ros) - [Boston Dynamic's Spot - Modified for CHAMP](https://github.com/chvmp/spot_ros) - [Dream Walker](https://github.com/Ohaginia/dream_walker) - [MIT Mini Cheetah - Original](https://github.com/HitSZwang/mini-cheetah-gazebo-urdf) - [MIT Mini Cheetah - Modified for CHAMP](https://github.com/chvmp/mini-cheetah-gazebo-urdf) - [OpenDog V2 - Original](https://github.com/XRobots/openDogV2) - [OpenDog V2 - Modified for CHAMP](https://github.com/chvmp/opendog_description) - **Open Quadruped** - [Open Quadruped](https://github.com/moribots/spot_mini_mini) - [SpotMicroAI - Gitlab](https://gitlab.com/custom_robots/spotmicroai) - [Spot Micro](https://github.com/chvmp/spotmicro_description) - [Unitree Robotics All](https://github.com/unitreerobotics/unitree_ros) - [Unitree Robotics' Youtube](https://www.youtube.com/@unitreerobotics7482) - [Unitree Robotics All - Modified for CHAMP](https://github.com/chvmp/unitree_ros) - [Unitree Robotics' A1](https://github.com/unitreerobotics/unitree_ros/tree/master/robots/a1_description) - [Unitree Robotics' AliengoZ1](https://github.com/unitreerobotics/unitree_ros/tree/master/robots/aliengoZ1_description) - [Unitree Robotics'Aliengo](https://github.com/unitreerobotics/unitree_ros/tree/master/robots/aliengo_description) - [Unitree Robotics' B1](https://github.com/unitreerobotics/unitree_ros/tree/master/robots/b1_description) - [Unitree Robotics' Go1](https://github.com/unitreerobotics/unitree_ros/tree/master/robots/go1_description) - [Unitree Robotics' Laikago](https://github.com/unitreerobotics/unitree_ros/tree/master/robots/laikago_description) - [Unitree Robotics' Z1](https://github.com/unitreerobotics/unitree_ros/tree/master/robots/z1_description) - [Stochlab's Stochlite](https://stochlab.github.io/) - [Stochlab's Stochlite - Modified by aditya-shirwatkar](https://github.com/aditya-shirwatkar/stochlite_description) - **Mini Pupper** - [MangDang's Mini Pupper](https://github.com/mangdangroboticsclub/QuadrupedRobot) - [simplified robot description of the MangDang's Mini Pupper](https://github.com/nisshan-x/mini_pupper_description) - [Stanford pupper - Original](https://stanfordstudentrobotics.org/pupper) - [Stanford pupper - Modified by Chandykunju Alex](https://github.com/chandyalex/stanford_pupper_description.git) ### Bipedal - [Agility Robotics' Cassie - UMich-BipedLab](https://github.com/UMich-BipedLab/cassie_description) - [Agility Robotics' Digit - DigitRobot.jl](https://github.com/adubredu/DigitRobot.jl) - [NJIT - TOCABI](https://github.com/cadop/tocabi) - [Unitree H1](https://github.com/google-deepmind/mujoco_menagerie/tree/main/unitree_h1) ### Manipulation - [GoogleAI ROBEL D'Kitty](https://github.com/google-research/robel-scenes) - [GoogleAI ROBEL D'Kitty - Modified for CHAMP](https://github.com/chvmp/dkitty_description) - [The Shadow Robot Company](https://github.com/shadow-robot) - [Shadow Hand - archived](https://github.com/AndrejOrsula/shadow_hand_ign) # Appendix ## Notes<br/> - NJIT-TOCABi has a high poly and low poly version, this repo has the low poly version [light_weight](https://github.com/cadop/tocabi/tree/main/light_weight).<br/> - Dream Walker usd files are too large. Could not commit instanceable_meshes.usd<br/> RobotEra TECHNOLOGY CO.,LTD. Founded in 2023, RobotEra TECHNOLOGY CO., LTD focuses on the R&D of embodied AI general-purpose humanoid robots. https://github.com/roboterax
5,263
Markdown
61.666666
163
0.746152
boredengineering/Robots_for_Omniverse/URDF_descriptions/openDogV2/README.md
# openDogV2 > Original Author: <br/> > James Bruton <br/> > Xrobots<br/> > Modified by: > Renan Monteiro Barbosa<br/> Purpose: Adapt this opensource quadruped robot project for the standards of the Isaac-Sim simulator.<br/> >Sources:<br/> >- [OpenDog V2 - Original](https://github.com/XRobots/openDogV2)<br/> >- [OpenDog V2 - Modified for CHAMP](https://github.com/chvmp/opendog_description)<br/> > CAD and Code that relates to this YouTube series:<br/> > https://www.youtube.com/playlist?list=PLpwJoq86vov9CcmrLGyM2XyyYDAYG0-Iu - **Release 1:** created at the end of part 6 of the YouTube series. Please note the issues stated at the end of this video.<br/> - **Release 2:** created at the end of part 7 of the YouTube series. Please note the issues stated during this video. Note that the remote is unchanged since release 1.<br/> - **Relase 3:** created for part 8 of the YouTube series. Includes the modified knee motor pulley, Python and Arduino code for the deep learning model.<br/> ## Related Community Projects: OpenDog URDF/config for CHAMP: https://github.com/chvmp/opendog_description 'openDog 2.1' with higher belt reductions and cooling fans: https://github.com/J-DIndustries/openDog-V2.1 # Modified for the OpenUSD format Import on Isaac-Sim
1,272
Markdown
42.89655
173
0.745283
boredengineering/Robots_for_Omniverse/URDF_descriptions/DigitRobot/README.md
# Digit Manufacturer: [Agility Robotics](https://agilityrobotics.com/)<br/> > Source:<br/> > - [DigitRobot.jl](https://github.com/adubredu/DigitRobot.jl)<br/>
160
Markdown
25.833329
67
0.70625
boredengineering/Robots_for_Omniverse/URDF_descriptions/UnitreeRobotics/unitree_h1/scene.xml
<mujoco model="h1 scene"> <include file="h1.xml"/> <statistic center="0 0 1" extent="1.8"/> <visual> <headlight diffuse="0.6 0.6 0.6" ambient="0.3 0.3 0.3" specular="0 0 0"/> <rgba haze="0.15 0.25 0.35 1"/> <global azimuth="160" elevation="-20"/> </visual> <asset> <texture type="skybox" builtin="gradient" rgb1="0.3 0.5 0.7" rgb2="0 0 0" width="512" height="3072"/> <texture type="2d" name="groundplane" builtin="checker" mark="edge" rgb1="0.2 0.3 0.4" rgb2="0.1 0.2 0.3" markrgb="0.8 0.8 0.8" width="300" height="300"/> <material name="groundplane" texture="groundplane" texuniform="true" texrepeat="5 5" reflectance="0.2"/> </asset> <worldbody> <light pos="0 0 3.5" dir="0 0 -1" directional="true"/> <geom name="floor" size="0 0 0.05" type="plane" material="groundplane"/> </worldbody> <keyframe> <key name="home" qpos=" 0 0 0.98 1 0 0 0 0 0 -0.4 0.8 -0.4 0 0 -0.4 0.8 -0.4 0 0 0 0 0 0 0 0 0"/> </keyframe> </mujoco>
1,021
XML
27.388888
109
0.578844
boredengineering/Robots_for_Omniverse/URDF_descriptions/UnitreeRobotics/unitree_h1/README.md
# Unitree H1 Description (MJCF) Requires MuJoCo 2.2.2 or later. ## Overview This package contains a simplified robot description (MJCF) of the [H1 Humanoid Robot](https://www.unitree.com/h1/) developed by [Unitree Robotics](https://www.unitree.com/). The original URDF and assets were provided directly by [Unitree Robotics](https://www.unitree.com/) under a [BSD-3-Clause License](LICENSE). <p float="left"> <img src="h1.png" width="400"> </p> ## URDF β†’ MJCF derivation steps 1. Added `<mujoco> <compiler discardvisual="false" strippath="false" fusestatic="false"/> </mujoco>` to the URDF's `<robot>` clause in order to preserve visual geometries. 2. Loaded the URDF into MuJoCo and saved a corresponding MJCF. 3. Manually edited the MJCF to extract common properties into the `<default>` section. 4. Added actuators. 5. Added `scene.xml` which includes the robot, with a textured groundplane, skybox, and haze. ## License This model is released under a [BSD-3-Clause License](LICENSE).
1,001
Markdown
33.551723
114
0.739261
boredengineering/Robots_for_Omniverse/URDF_descriptions/UnitreeRobotics/unitree_h1/h1.xml
<mujoco model="h1"> <compiler angle="radian" meshdir="assets" autolimits="true"/> <statistic meansize="0.05"/> <default> <default class="h1"> <joint damping="1" armature="0.1"/> <default class="visual"> <geom type="mesh" contype="0" conaffinity="0" group="2" material="black"/> </default> <default class="collision"> <geom group="3" mass="0" density="0"/> <default class="foot"> <geom type="capsule" size=".014"/> <default class="foot1"> <geom fromto="-.035 0 -0.056 .02 0 -0.045"/> </default> <default class="foot2"> <geom fromto=".02 0 -0.045 .115 0 -0.056"/> </default> <default class="foot3"> <geom fromto=".14 -.03 -0.056 .14 .03 -0.056"/> </default> </default> </default> <site size="0.001" rgba="0.5 0.5 0.5 0.3" group="4"/> </default> </default> <asset> <material name="black" rgba="0.1 0.1 0.1 1"/> <material name="white" rgba="1 1 1 1"/> <mesh file="pelvis.stl"/> <mesh file="left_hip_yaw_link.stl"/> <mesh file="left_hip_roll_link.stl"/> <mesh file="left_hip_pitch_link.stl"/> <mesh file="left_knee_link.stl"/> <mesh file="left_ankle_link.stl"/> <mesh file="right_hip_yaw_link.stl"/> <mesh file="right_hip_roll_link.stl"/> <mesh file="right_hip_pitch_link.stl"/> <mesh file="right_knee_link.stl"/> <mesh file="right_ankle_link.stl"/> <mesh file="torso_link.stl"/> <mesh file="left_shoulder_pitch_link.stl"/> <mesh file="left_shoulder_roll_link.stl"/> <mesh file="left_shoulder_yaw_link.stl"/> <mesh file="left_elbow_link.stl"/> <mesh file="right_shoulder_pitch_link.stl"/> <mesh file="right_shoulder_roll_link.stl"/> <mesh file="right_shoulder_yaw_link.stl"/> <mesh file="right_elbow_link.stl"/> <mesh file="logo_link.stl"/> </asset> <worldbody> <light mode="targetbodycom" target="torso_link" pos="2 0 2.5"/> <body name="pelvis" pos="0 0 1.06" childclass="h1"> <inertial pos="-0.0002 4e-05 -0.04522" quat="0.498303 0.499454 -0.500496 0.501741" mass="5.39" diaginertia="0.0490211 0.0445821 0.00824619"/> <freejoint/> <geom class="visual" mesh="pelvis"/> <body name="left_hip_yaw_link" pos="0 0.0875 -0.1742"> <inertial pos="-0.04923 0.0001 0.0072" quat="0.69699 0.219193 0.233287 0.641667" mass="2.244" diaginertia="0.00304494 0.00296885 0.00189201"/> <joint name="left_hip_yaw" axis="0 0 1" range="-0.43 0.43"/> <geom class="visual" mesh="left_hip_yaw_link"/> <geom size="0.06 0.035" pos="-0.067 0 0" quat="0.707123 0 0.70709 0" type="cylinder" class="collision"/> <body name="left_hip_roll_link" pos="0.039468 0 0"> <inertial pos="-0.0058 -0.00319 -9e-05" quat="0.0438242 0.70721 -0.0729075 0.701867" mass="2.232" diaginertia="0.00243264 0.00225325 0.00205492"/> <joint name="left_hip_roll" axis="1 0 0" range="-0.43 0.43"/> <geom class="visual" mesh="left_hip_roll_link"/> <geom class="collision" type="cylinder" size="0.05 0.03" quat="1 1 0 0" pos="0 -0.02 0"/> <body name="left_hip_pitch_link" pos="0 0.11536 0"> <inertial pos="0.00746 -0.02346 -0.08193" quat="0.979828 0.0513522 -0.0169854 -0.192382" mass="4.152" diaginertia="0.0829503 0.0821457 0.00510909"/> <joint name="left_hip_pitch" axis="0 1 0" range="-1.57 1.57"/> <geom class="visual" mesh="left_hip_pitch_link"/> <geom class="collision" type="capsule" size="0.03" fromto="0.02 0 -0.4 -0.02 0 0.02"/> <geom class="collision" type="capsule" size="0.03" fromto="0.02 0 -0.4 0.02 0 0.02"/> <geom class="collision" type="cylinder" size="0.05 0.02" quat="1 1 0 0" pos="0 -0.07 0"/> <body name="left_knee_link" pos="0 0 -0.4"> <inertial pos="-0.00136 -0.00512 -0.1384" quat="0.626132 -0.034227 -0.0416277 0.777852" mass="1.721" diaginertia="0.0125237 0.0123104 0.0019428"/> <joint name="left_knee" axis="0 1 0" range="-0.26 2.05"/> <geom class="visual" mesh="left_knee_link"/> <geom class="collision" type="capsule" size="0.025" fromto="0.02 0 -0.4 0.02 0 0"/> <geom class="collision" type="sphere" size="0.05" pos="0 0 -0.115"/> <body name="left_ankle_link" pos="0 0 -0.4"> <inertial pos="0.06722 0.00015 -0.04497" quat="0.489101 0.503197 0.565782 0.432972" mass="0.446" diaginertia="0.00220848 0.00218961 0.000214202"/> <joint name="left_ankle" axis="0 1 0" range="-0.87 0.52"/> <geom class="visual" mesh="left_ankle_link"/> <geom class="foot1"/> <geom class="foot2"/> <geom class="foot3"/> </body> </body> </body> </body> </body> <body name="right_hip_yaw_link" pos="0 -0.0875 -0.1742"> <inertial pos="-0.04923 -0.0001 0.0072" quat="0.641667 0.233287 0.219193 0.69699" mass="2.244" diaginertia="0.00304494 0.00296885 0.00189201"/> <joint name="right_hip_yaw" axis="0 0 1" range="-0.43 0.43"/> <geom class="visual" mesh="right_hip_yaw_link"/> <geom size="0.06 0.035" pos="-0.067 0 0" quat="0.707123 0 0.70709 0" type="cylinder" class="collision"/> <body name="right_hip_roll_link" pos="0.039468 0 0"> <inertial pos="-0.0058 0.00319 -9e-05" quat="-0.0438242 0.70721 0.0729075 0.701867" mass="2.232" diaginertia="0.00243264 0.00225325 0.00205492"/> <joint name="right_hip_roll" axis="1 0 0" range="-0.43 0.43"/> <geom class="visual" mesh="right_hip_roll_link"/> <geom class="collision" type="cylinder" size="0.05 0.03" quat="1 1 0 0" pos="0 0.02 0"/> <body name="right_hip_pitch_link" pos="0 -0.11536 0"> <inertial pos="0.00746 0.02346 -0.08193" quat="0.979828 -0.0513522 -0.0169854 0.192382" mass="4.152" diaginertia="0.0829503 0.0821457 0.00510909"/> <joint name="right_hip_pitch" axis="0 1 0" range="-1.57 1.57"/> <geom class="visual" mesh="right_hip_pitch_link"/> <geom class="collision" type="capsule" size="0.03" fromto="0.02 0 -0.4 -0.02 0 0.02"/> <geom class="collision" type="capsule" size="0.03" fromto="0.02 0 -0.4 0.02 0 0.02"/> <geom class="collision" type="cylinder" size="0.05 0.02" quat="1 1 0 0" pos="0 0.07 0"/> <body name="right_knee_link" pos="0 0 -0.4"> <inertial pos="-0.00136 0.00512 -0.1384" quat="0.777852 -0.0416277 -0.034227 0.626132" mass="1.721" diaginertia="0.0125237 0.0123104 0.0019428"/> <joint name="right_knee" axis="0 1 0" range="-0.26 2.05"/> <geom class="visual" mesh="right_knee_link"/> <geom class="collision" type="capsule" size="0.025" fromto="0.02 0 -0.4 0.02 0 0"/> <geom class="collision" type="sphere" size="0.05" pos="0 0 -0.115"/> <body name="right_ankle_link" pos="0 0 -0.4"> <inertial pos="0.06722 -0.00015 -0.04497" quat="0.432972 0.565782 0.503197 0.489101" mass="0.446" diaginertia="0.00220848 0.00218961 0.000214202"/> <joint name="right_ankle" axis="0 1 0" range="-0.87 0.52"/> <geom class="visual" mesh="right_ankle_link"/> <geom class="foot1"/> <geom class="foot2"/> <geom class="foot3"/> </body> </body> </body> </body> </body> <body name="torso_link"> <inertial pos="0.000489 0.002797 0.20484" quat="0.999989 -0.00130808 -0.00282289 -0.00349105" mass="17.789" diaginertia="0.487315 0.409628 0.127837"/> <joint name="torso" axis="0 0 1" range="-2.35 2.35"/> <geom class="visual" mesh="torso_link"/> <geom class="visual" material="white" mesh="logo_link"/> <geom name="head" class="collision" type="capsule" size="0.06" fromto="0.05 0 0.68 0.05 0 0.6"/> <geom name="helmet" class="collision" type="sphere" size="0.073" pos="0.045 0 0.68"/> <geom name="torso" class="collision" type="box" size="0.07 0.1 0.22" pos="0 0 0.25"/> <geom name="hip" class="collision" type="capsule" size="0.05" fromto="0 -0.1 -0.05 0 0.1 -0.05"/> <site name="imu" pos="-0.04452 -0.01891 0.27756"/> <body name="left_shoulder_pitch_link" pos="0.0055 0.15535 0.42999" quat="0.976296 0.216438 0 0"> <inertial pos="0.005045 0.053657 -0.015715" quat="0.814858 0.579236 -0.0201072 -0.00936488" mass="1.033" diaginertia="0.00129936 0.000987113 0.000858198"/> <joint name="left_shoulder_pitch" axis="0 1 0" range="-2.87 2.87"/> <geom class="visual" mesh="left_shoulder_pitch_link"/> <body name="left_shoulder_roll_link" pos="-0.0055 0.0565 -0.0165" quat="0.976296 -0.216438 0 0"> <inertial pos="0.000679 0.00115 -0.094076" quat="0.732491 0.00917179 0.0766656 0.676384" mass="0.793" diaginertia="0.00170388 0.00158256 0.00100336"/> <joint name="left_shoulder_roll" axis="1 0 0" range="-0.34 3.11"/> <geom class="visual" mesh="left_shoulder_roll_link"/> <geom name="left_shoulder" class="collision" type="capsule" size="0.04" fromto="0 0.01 0.008 0 -0.07 -0.02"/> <body name="left_shoulder_yaw_link" pos="0 0 -0.1343"> <inertial pos="0.01365 0.002767 -0.16266" quat="0.703042 -0.0331229 -0.0473362 0.708798" mass="0.839" diaginertia="0.00408038 0.00370367 0.000622687"/> <joint name="left_shoulder_yaw" axis="0 0 1" range="-1.3 4.45"/> <geom class="visual" mesh="left_shoulder_yaw_link"/> <geom class="collision" type="capsule" size="0.03" fromto="0 0 0.15 0 0 -0.2"/> <body name="left_elbow_link" pos="0.0185 0 -0.198"> <inertial pos="0.15908 -0.000144 -0.015776" quat="0.0765232 0.720327 0.0853116 0.684102" mass="0.669" diaginertia="0.00601829 0.00600579 0.000408305"/> <joint name="left_elbow" axis="0 1 0" range="-1.25 2.61"/> <geom class="visual" mesh="left_elbow_link"/> <geom class="collision" type="capsule" size="0.025" fromto="0 0 0 0.28 0 -0.015"/> <geom class="collision" type="sphere" size="0.033" pos="0.28 0 -0.015"/> </body> </body> </body> </body> <body name="right_shoulder_pitch_link" pos="0.0055 -0.15535 0.42999" quat="0.976296 -0.216438 0 0"> <inertial pos="0.005045 -0.053657 -0.015715" quat="0.579236 0.814858 0.00936488 0.0201072" mass="1.033" diaginertia="0.00129936 0.000987113 0.000858198"/> <joint name="right_shoulder_pitch" axis="0 1 0" range="-2.87 2.87"/> <geom class="visual" mesh="right_shoulder_pitch_link"/> <body name="right_shoulder_roll_link" pos="-0.0055 -0.0565 -0.0165" quat="0.976296 0.216438 0 0"> <inertial pos="0.000679 -0.00115 -0.094076" quat="0.676384 0.0766656 0.00917179 0.732491" mass="0.793" diaginertia="0.00170388 0.00158256 0.00100336"/> <joint name="right_shoulder_roll" axis="1 0 0" range="-3.11 0.34"/> <geom class="visual" mesh="right_shoulder_roll_link"/> <geom name="right_shoulder" class="collision" type="capsule" size="0.04" fromto="0 -0.01 0.008 0 0.07 -0.02"/> <body name="right_shoulder_yaw_link" pos="0 0 -0.1343"> <inertial pos="0.01365 -0.002767 -0.16266" quat="0.708798 -0.0473362 -0.0331229 0.703042" mass="0.839" diaginertia="0.00408038 0.00370367 0.000622687"/> <joint name="right_shoulder_yaw" axis="0 0 1" range="-4.45 1.3"/> <geom class="visual" mesh="right_shoulder_yaw_link"/> <geom class="collision" type="capsule" size="0.03" fromto="0 0 0.15 0 0 -0.2"/> <body name="right_elbow_link" pos="0.0185 0 -0.198"> <inertial pos="0.15908 0.000144 -0.015776" quat="-0.0765232 0.720327 -0.0853116 0.684102" mass="0.669" diaginertia="0.00601829 0.00600579 0.000408305"/> <joint name="right_elbow" axis="0 1 0" range="-1.25 2.61"/> <geom class="visual" mesh="right_elbow_link"/> <geom class="collision" type="capsule" size="0.025" fromto="0 0 0 0.28 0 -0.015"/> <geom class="collision" type="sphere" size="0.033" pos="0.28 0 -0.015"/> </body> </body> </body> </body> </body> </body> </worldbody> <contact> <exclude body1="torso_link" body2="left_shoulder_roll_link"/> <exclude body1="torso_link" body2="right_shoulder_roll_link"/> </contact> <actuator> <motor class="h1" name="left_hip_yaw" joint="left_hip_yaw" ctrlrange="-200 200"/> <motor class="h1" name="left_hip_roll" joint="left_hip_roll" ctrlrange="-200 200"/> <motor class="h1" name="left_hip_pitch" joint="left_hip_pitch" ctrlrange="-200 200"/> <motor class="h1" name="left_knee" joint="left_knee" ctrlrange="-300 300"/> <motor class="h1" name="left_ankle" joint="left_ankle" ctrlrange="-40 40"/> <motor class="h1" name="right_hip_yaw" joint="right_hip_yaw" ctrlrange="-200 200"/> <motor class="h1" name="right_hip_roll" joint="right_hip_roll" ctrlrange="-200 200"/> <motor class="h1" name="right_hip_pitch" joint="right_hip_pitch" ctrlrange="-200 200"/> <motor class="h1" name="right_knee" joint="right_knee" ctrlrange="-300 300"/> <motor class="h1" name="right_ankle" joint="right_ankle" ctrlrange="-40 40"/> <motor class="h1" name="torso" joint="torso" ctrlrange="-200 200"/> <motor class="h1" name="left_shoulder_pitch" joint="left_shoulder_pitch" ctrlrange="-40 40"/> <motor class="h1" name="left_shoulder_roll" joint="left_shoulder_roll" ctrlrange="-40 40"/> <motor class="h1" name="left_shoulder_yaw" joint="left_shoulder_yaw" ctrlrange="-18 18"/> <motor class="h1" name="left_elbow" joint="left_elbow" ctrlrange="-18 18"/> <motor class="h1" name="right_shoulder_pitch" joint="right_shoulder_pitch" ctrlrange="-40 40"/> <motor class="h1" name="right_shoulder_roll" joint="right_shoulder_roll" ctrlrange="-40 40"/> <motor class="h1" name="right_shoulder_yaw" joint="right_shoulder_yaw" ctrlrange="-18 18"/> <motor class="h1" name="right_elbow" joint="right_elbow" ctrlrange="-18 18"/> </actuator> </mujoco>
14,745
XML
59.683127
122
0.577077
boredengineering/Robots_for_Omniverse/URDF_descriptions/MIT_mini-cheetah/README.md
# MIT Mini Cheetah An urdf description file of a quadruped robot modeled on mini cheetah. >Source: <br/> >- YOBOTICS, INC.<br/> >- [MIT Mini Cheetah - Original](https://github.com/HitSZwang/mini-cheetah-gazebo-urdf)<br/> >- [MIT Mini Cheetah - Modified for CHAMP](https://github.com/chvmp/mini-cheetah-gazebo-urdf)<br/>
321
Markdown
39.249995
98
0.725857
boredengineering/Robots_for_Omniverse/URDF_descriptions/BostonDynamics/README.md
# Boston Dynamics Robots https://www.bostondynamics.com/ ## Little Dog > Source:<br/> > - [Boston Dynamic's Little Dog - by RobotLocomotion](https://github.com/RobotLocomotion/LittleDog) > - [Boston Dynamic's Little Dog - Modified for CHAMP](https://github.com/chvmp/littledog_description) ## Spot > Source:<br/> > - [Boston Dynamic's Spot - by heuristicus](https://github.com/heuristicus/spot_ros) > - [Boston Dynamic's Spot - Modified for CHAMP](https://github.com/chvmp/spot_ros)
486
Markdown
33.785712
102
0.726337
XiaomingY/omni-ies-viewer/README.md
# IES Viewer Omniverse Extension ![](./exts/IESViewer/data/preview.png) This extension displays IES profile web for selected light objects. It is particularly useful for visualizing architectural lighting designs. Orientation of measured light distribution profiles could be quickly tested with visual feedback. IES files are resampled to be light weight and consistant to render. [A video demo](https://drive.google.com/file/d/1DxvjVGT6ZlfukfuTvyBu3iXaHz8qvY5Q/view?usp=sharing) This extension is developed based on the [omni.example.ui_scene.object_info](https://github.com/NVIDIA-Omniverse/kit-extension-sample-ui-scene/tree/main/exts/omni.example.ui_scene.object_info) Supported light type: sphere light, rectangular light, disk light and cylinder light. Only Type C IES file is supported currently, which is also the most commonly used type for architectural light. ## Adding This Extension To add a this extension to your Omniverse app: 1. Go to Extension Manager and turn on Viewport Utility extension 2. Add `git://github.com/XiaomingY/omni-ies-viewer.git?branch=main&dir=exts` to extension search path 3. Turn on IES Viewer Extension
1,150
Markdown
59.578944
407
0.806087
XiaomingY/omni-ies-viewer/exts/IESViewer/IESViewer/extension.py
import omni.ext import omni.ui as ui from omni.kit.viewport.utility import get_active_viewport_window from .viewport_scene import ViewportSceneInfo # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class AimingToolExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def __init__(self) -> None: super().__init__() self.viewport_scene = None def on_startup(self, ext_id): viewport_window = get_active_viewport_window() self.viewport_scene = ViewportSceneInfo(viewport_window, ext_id) def on_shutdown(self): if self.viewport_scene: self.viewport_scene.destroy() self.viewport_scene = None
1,023
Python
38.384614
119
0.7087
XiaomingY/omni-ies-viewer/exts/IESViewer/IESViewer/viewport_scene.py
from omni.ui import scene as sc import omni.ui as ui from .object_info_manipulator import ObjInfoManipulator from .object_info_model import ObjInfoModel class ViewportSceneInfo(): """The Object Info Manipulator, placed into a Viewport""" def __init__(self, viewport_window, ext_id) -> None: self.scene_view = None self.viewport_window = viewport_window # NEW: Create a unique frame for our SceneView with self.viewport_window.get_frame(ext_id): # Create a default SceneView (it has a default camera-model) self.scene_view = sc.SceneView() # Add the manipulator into the SceneView's scene with self.scene_view.scene: ObjInfoManipulator(model=ObjInfoModel()) # Register the SceneView with the Viewport to get projection and view updates self.viewport_window.viewport_api.add_scene_view(self.scene_view) def __del__(self): self.destroy() def destroy(self): if self.scene_view: # Empty the SceneView of any elements it may have self.scene_view.scene.clear() # un-register the SceneView from Viewport updates if self.viewport_window: self.viewport_window.viewport_api.remove_scene_view(self.scene_view) # Remove our references to these objects self.viewport_window = None self.scene_view = None
1,422
Python
39.657142
89
0.656118
XiaomingY/omni-ies-viewer/exts/IESViewer/IESViewer/object_info_model.py
from pxr import Tf from pxr import Gf from pxr import Usd from pxr import UsdGeom from pxr import UsdShade from pxr import UsdLux from .IESReader import IESLight import os.path import numpy as np from omni.ui import scene as sc import omni.usd def _flatten_matrix(matrix: Gf.Matrix4d): m0, m1, m2, m3 = matrix[0], matrix[1], matrix[2], matrix[3] return [ m0[0], m0[1], m0[2], m0[3], m1[0], m1[1], m1[2], m1[3], m2[0], m2[1], m2[2], m2[3], m3[0], m3[1], m3[2], m3[3], ] class ObjInfoModel(sc.AbstractManipulatorModel): """ The model tracks the position and info of the selected object. """ class MatrixItem(sc.AbstractManipulatorItem): """ The Model Item represents the tranformation. It doesn't contain anything because we take the tranformation directly from USD when requesting. """ identity = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1] def __init__(self): super().__init__() self.value = self.identity.copy() class PositionItem(sc.AbstractManipulatorItem): """ The Model Item represents the position. It doesn't contain anything because we take the position directly from USD when requesting. """ def __init__(self) -> None: super().__init__() self.value = [0, 0, 0] class PositionList(sc.AbstractManipulatorItem): """ The Model Item represents the position. It doesn't contain anything because we take the position directly from USD when requesting. """ def __init__(self) -> None: super().__init__() self.value = [[0,0,0]] def __init__(self) -> None: super().__init__() # Current selected prim list self.prim = [] self.current_path = [] self.material_name = [] self.stage_listener = None self.horizontal_step = 15 self.vertical_step = 15 self.IESPoints = [ObjInfoModel.PositionList()] self.transformation = [ObjInfoModel.MatrixItem()] # Save the UsdContext name (we currently only work with a single Context) self.usd_context = self._get_context() # Track selection changes self.events = self.usd_context.get_stage_event_stream() self.stage_event_delegate = self.events.create_subscription_to_pop( self.on_stage_event, name="Object Info Selection Update" ) @property def _time(self): return Usd.TimeCode.Default() def _get_context(self) -> Usd.Stage: # Get the UsdContext we are attached to return omni.usd.get_context() #Update when light are transformed or modified def notice_changed(self, notice: Usd.Notice, stage: Usd.Stage) -> None: """Called by Tf.Notice. Used when the current selected object changes in some way.""" light_path = self.current_path if not light_path: return for p in notice.GetChangedInfoOnlyPaths(): prim_path = p.GetPrimPath().pathString #check if prim_path not in selected list but parent of prim_path is in selected list if prim_path not in light_path: if (True in (light_path_item.startswith(prim_path) for light_path_item in light_path)): if UsdGeom.Xformable.IsTransformationAffectedByAttrNamed(p.name): self._item_changed(self.transformation[0]) continue if UsdGeom.Xformable.IsTransformationAffectedByAttrNamed(p.name): self._item_changed(self.transformation[0]) #if light property changed such as ies file changed, update profile self._item_changed(self.transformation[0]) def _get_transform(self, time: Usd.TimeCode): """Returns world transform of currently selected object""" if not self.prim: return [ObjInfoModel.MatrixItem.identity.copy()] # Compute matrix from world-transform in USD #get transform matrix for each selected light world_xform_list = [UsdGeom.BasisCurves(prim).ComputeLocalToWorldTransform(time) for prim in self.prim] # Flatten Gf.Matrix4d to list return [_flatten_matrix(world_xform) for world_xform in world_xform_list] def get_item(self, identifier): if identifier == "IESPoints": return self.IESPoints if identifier == "transformation": return self.transformation def get_as_floats(self, item): if item == self.transformation: return self._get_transform(self._time) if item == self.IESPoints: return self.get_points(self._time) return [] #get ies points for each selected light def get_points(self, time: Usd.TimeCode): if not self.prim: return [[0,0,0]] allIESPoint = [] for prim in self.prim: iesFile = prim.GetAttribute('shaping:ies:file').Get() allIESPoint.append(IESLight(str(iesFile).replace('@', '')).points) return allIESPoint def on_stage_event(self, event): """Called by stage_event_stream. We only care about selection changes.""" if event.type == int(omni.usd.StageEventType.SELECTION_CHANGED): self.current_path = [] self.prim = [] primList = [] primPathList = [] usd_context = self._get_context() stage = usd_context.get_stage() if not stage: return prim_paths = usd_context.get_selection().get_selected_prim_paths() if not prim_paths: # This turns off the manipulator when everything is deselected self._item_changed(self.transformation[0]) return #select light with ies file applied. lightCount = 0 for i in prim_paths: prim = stage.GetPrimAtPath(i) if(UsdLux.Light(prim) and prim.GetAttribute('shaping:ies:file').Get() and not (prim.IsA(UsdLux.DistantLight))): primList.append(prim) primPathList.append(i) lightCount = lightCount +1 if(lightCount==0): if self.stage_listener: self.stage_listener.Revoke() self.stage_listener = None self._item_changed(self.transformation[0]) return if not self.stage_listener: # This handles camera movement self.stage_listener = Tf.Notice.Register(Usd.Notice.ObjectsChanged, self.notice_changed, stage) self.prim = primList self.current_path = primPathList # Position is changed because new selected object has a different position self._item_changed(self.transformation[0]) def destroy(self): self.events = None self.stage_event_delegate.unsubscribe()
7,171
Python
33.985366
127
0.585553
XiaomingY/omni-ies-viewer/exts/IESViewer/IESViewer/object_info_manipulator.py
from __future__ import division from omni.ui import scene as sc from omni.ui import color as cl import omni.ui as ui import numpy as np class ObjInfoManipulator(sc.Manipulator): """Manipulator that displays the object path and material assignment with a leader line to the top of the object's bounding box. """ def on_build(self): """Called when the model is changed and rebuilds the whole manipulator""" if not self.model: return IESPoints = self.model.get_as_floats(self.model.IESPoints) numHorizontal = int((360/self.model.horizontal_step)+1) primCount = 0 for transformation in self.model.get_as_floats(self.model.transformation): self.__root_xf = sc.Transform(transformation) with self.__root_xf: self._x_xform = sc.Transform() with self._x_xform: self._shape_xform = sc.Transform() IESPoint = IESPoints[primCount] numVertical = int(len(IESPoint)/numHorizontal) for index in range(0,numHorizontal): points = IESPoint[index*numVertical:(index+1)*numVertical] if(len(points)>0): sc.Curve(points.tolist(), thicknesses=[1.0], colors=[cl.yellow],tessellation=9) primCount = primCount+1 def on_model_updated(self, item): # Regenerate the manipulator self.invalidate()
1,526
Python
37.174999
107
0.589122
XiaomingY/omni-ies-viewer/exts/IESViewer/IESViewer/IESReader.py
import numpy as np import re import math #import matplotlib.pyplot as plt from scipy import interpolate import os.path #from mpl_toolkits.mplot3d.axes3d import Axes3D import omni.ext import omni.ui as ui omni.kit.pipapi.install("astropy") from astropy.coordinates import spherical_to_cartesian DEFAULT_HORIZONTAL_STEP = 15 DEFAULT_VERTICAL_STEP = 15 IES_MaxLength = 80 class IESLight(): def __init__(self,iesFile): # Current selected prim if iesFile and os.path.exists(iesFile): self.file = iesFile else: return self.width = 0 self.length = 0 self.radius = 0 all_values = self.readIESfile(self.file) verticalAngles,horizontalAngles,intensities,self.width,self.length,self.radius = self.getIESproperties(all_values) horizontalAnglesMirrored, intensityMirrored = self.mirrorAngles(horizontalAngles,intensities) horizontalResampled = np.arange(0, 361, DEFAULT_HORIZONTAL_STEP) verticalResampled = np.arange(0, verticalAngles[-1]+1, DEFAULT_VERTICAL_STEP) resampledIntensity = self.interpolateIESValues(np.array(horizontalAnglesMirrored),np.array(verticalAngles),horizontalResampled,verticalResampled,intensityMirrored) self.points = self.IESCoord2XYZ(horizontalResampled,verticalResampled,resampledIntensity,IES_MaxLength) #read ies files and return vertical angles, horizontal angles, intensities, width, length, radius. #based on the symmetry, horizontal angles and resampled def readIESfile(self, fileName): f=open(fileName, encoding = "ISO-8859-1")#need rb to read \r\n correctly. Otherwise universial newline function ignores carriage return. startReading = 0 line = f.readline() allValues = "" while line: if( not(line.strip())): break else: #after this line, there are actual useful values if("TILT=NONE" in line.strip()): line = f.readline() startReading = 1 #read all number to one string if(startReading): allValues = allValues+line line = f.readline() f.close() #one array with all values dimentions = re.split('\s+',allValues.strip()) return dimentions def getIESproperties(self, allValues): #return FEET2METER = 0.3048 verticalAngles = [] horizontalAngles = [] width = 0 length = 0 radius = 0 intensityMultiplier = 1 numberVerticalAngle = 0 numberHorizontalAngle = 0 unit = 1 #1 for feet, 2 for meter #number of vertical angles and horizontal angles measured numberVerticalAngle = int(allValues[3]) numberHorizontalAngle = int(allValues[4]) #check if shape is rectangle or disk if(float(allValues[7])<0): radius = allValues[7]*-1 else: width = allValues[7] length = allValues[8] #convert dimentions to meter if measured in feet if(float(allValues[6])==1): radius = radius*FEET2METER width = width *FEET2METER length = length * FEET2METER #the actual vertical angles and horizontal angles in list verticalAngles = list(map(float, allValues[13:13+numberVerticalAngle])) horizontalAngles = list(map(float,allValues[13+numberVerticalAngle:13+numberVerticalAngle+numberHorizontalAngle])) #read intensities and convert it to 2d array intensities = np.array(allValues[13+numberVerticalAngle+numberHorizontalAngle:len(allValues)]) intensities = intensities.reshape(numberHorizontalAngle,numberVerticalAngle).astype(np.float16) return verticalAngles,horizontalAngles,intensities,width,length,radius #ies could have several symmetry: #(1)only measured in one horizontal angle (0) which need to be repeated to all horizontal angle from 0 to 360 #(2)only measured in horizontal angles (0~90) which need to be mirrored twice to horizontal angle from 0 to 360 #(3)only measured in horizontal angles (0~180) which need to be mirrored to horizontal angle from 0 to 360 #(4)only measured in horizontal angles (0~360) which could be used directly def mirrorAngles(self, horizontalAngles,intensities): #make use of symmetry in the file and produce horizontal angles from 0~360 if(horizontalAngles[-1]==0): horizontalAnglesMirrored = list(np.arange(0,361,DEFAULT_HORIZONTAL_STEP)) else: horizontalAnglesMirrored = list(np.arange(0,361,horizontalAngles[-1]/(len(horizontalAngles)-1))) #make use of symmetry in the file and copy intensitys for horizontal angles from 0~360 if(horizontalAngles[-1]==90): #mirror results [90:180] a = np.concatenate((intensities, np.flip(intensities, 0)[1:]), axis=0) intensityMirrored = np.concatenate((a, np.flip(a, 0)[1:]), axis=0) elif(horizontalAngles[-1]==180): intensityMirrored = np.concatenate((intensities, np.flip(intensities, 0)[1:]), axis=0) elif(horizontalAngles[-1]==0): intensityMirrored = np.array(([intensities[0],]*len(np.arange(0,361,DEFAULT_HORIZONTAL_STEP)))) else: #print("Symmetry 360") intensityMirrored = intensities return horizontalAnglesMirrored, intensityMirrored def IESCoord2XYZ(self, horizontalAngles,verticalAngles,intensity,maxLength): maxValue = np.amax(intensity) if(maxValue>maxLength): intensity = intensity*(maxLength/maxValue) for index, horizontalAngle in enumerate(horizontalAngles): if(index ==0): #Omniverse and 3ds Max makes the light upside down, horizontal angle rotation direction need to be flipped. points = np.array(spherical_to_cartesian(intensity[index].tolist(), [math.radians(90-x) for x in verticalAngles], [math.radians(-1*horizontalAngle)]*len(verticalAngles))).transpose() else: newPoints = np.array(spherical_to_cartesian(intensity[index], [math.radians(90-x) for x in verticalAngles], [math.radians(-1*horizontalAngle)]*len(verticalAngles))).transpose() points = np.concatenate((points, newPoints), axis=0) #Omniverse and 3ds Max makes the light upside down, so flip z. points[:,2] *= -1 return points def interpolateIESValues(self, originalHorizontalAngles, originalVerticalAngles, newHorizontalAngles,newVerticalAngles, intensity): fun = interpolate.interp2d(originalVerticalAngles, originalHorizontalAngles, intensity, kind='linear') # kind could be {'linear', 'cubic', 'quintic'} interpolatedIntensity = fun(newVerticalAngles,newHorizontalAngles) return interpolatedIntensity
7,030
Python
47.489655
198
0.661024
XiaomingY/omni-ies-viewer/exts/IESViewer/config/extension.toml
[package] # Semantic Versionning is used: https://semver.org/ version = "1.0.0" authors = ["Xiaoming Yang"] # The title and description fields are primarily for displaying extension info in UI title = "IES Viewer For Display IES Light Profiles" description="This extension displays IES profiles for selected light objects." # Path (relative to the root) or content of readme markdown file for UI. readme = "docs/README.md" # URL of the extension source repository. repository = "https://github.com/XiaomingY/omni-ies-viewer" # One of categories for UI. category = "Lighting" # Keywords for the extension keywords = ["Lighting", "IES"] changelog = "docs/CHANGELOG.md" preview_image = "data/preview.png" icon = "data/icon.png" # Use omni.ui to build simple UI [dependencies] "omni.ui.scene" = { } "omni.usd" = { } "omni.kit.viewport.utility" = { } # Main python module this extension provides, it will be publicly available as "import AimingTool". [[python.module]] name = "IESViewer"
993
TOML
29.121211
99
0.732125
Ekozmaster/NvidiaOmniverseRTXRemixTools/README.md
# RTX Remix Tools [ekozerski.rtxremixtools] Focusing on improving RTX Remix modding workflows, this extension is designed to speed up iteration when producing assets and mods by providing useful UI operations inside Omniverse apps like USD Composer/Create or Code. It provides some options for the "Right click" context menu to setup ideal replacement assets, as well as some converting operations to ensure assets will be compatible with the Remix runtime. ![Alt text](ContextMenu.png) It is primarily designed to operate on Remix captured scenes, so users can have instant feedbacks on what their mods are gonna look like in the game scenes and iterate faster. ## Available Tools ### Fix Meshes Geometry <i>(Operation is performed on every mesh of a USD/USDA source file and can\'t be undone)</i> Interpolation Mode - RTX Remix runtime only supports meshes with "vertex" interpolation mode, in which "points" "normals" and "uvs" arrays must have the same length, but DCC tools usually export the mesh using "faceVarying" interpolation mode. This operation reorganizes the geometry to be compatible with the runtime. - See: "Interpolation of Geometric Primitive Variables" - https://openusd.org/dev/api/class_usd_geom_primvar.html - This operation only applies for meshes inside the mods folder, not the captured ones. UV Maps - The runtime supports one single UV map per mesh, which should have one of a few known names, so this script finds many variations, picks one and renames to the standard "primvars:st", while also setting the appropriate type as "TextureCoordinate" (TexCoord2fArray / TexCoord2f[]). The other UVmaps are discarded. Unused Primvars - displayColor and displayOpacity are now removed from the mesh. ### Setup for Mesh Replacement Exports the selected mesh in a selected path, already setting up the replacements and references to work in the runtime, so for every change the user only needs to: - Open the exported mesh in it's DCC of choice, make the changes and export again (with the right settings, triangulating faces, no materials, etc.) - Back in OV, refresh the reference to see the changes in the captured scene. - Use the "Fix Meshes Geometry" again to make it Remix-compatible. - Enjoy. The original mesh is kept in case the user only wants to add more models. Make sure to delete it if the intention is to completely replace the original mesh. ### Add Model If the user already has authored USD models, this option allows to select multiple models and add to the mesh_HASH prim. ### Add Material This option allows to select a material .MDL file (AperturePBR_Opacity.mdl or AperturePBR_Translucent.mdl) to add a material prim to the mesh_HASH prim. ### Original Draw Call Preservation Allows to set the "custom int preserveOriginalDrawCall" attribute to indicate whether the runtime should be forced to render the original mesh or not. Must be set to 1 when placing custom lights or else the original mesh disappears. PS: Remember to set this to 0 if you want to make a mesh replacement and remove the original mesh. ### Select Source Mesh Quick way to select the originial source mesh_HASH prim in the scene when you have an instance prim selected. <br> ## Things to Keep in mind - In a capture scene, any changes made to the "inst_SOMEHASH_x" prims won't show up in the runtime, so every changes must be done in the "mesh_SOMEHASH" they're referencing. Whenever the user clicks a inst_ prim to perform an action like Fixing geometry or Add Model (Ex: Right clicking in the 3D viewport), this tool will try to find the referenced mesh_SOMEHASH and perform the operations in it instead. - Having that in mind, always keep an eye in the "Layers" tab to check if you have done any changes to the "instances" path. Try to delete those changes as much as possible. - The only material types that work in the runtime are described in the AperturePBR_Opacity.MDL and AperturePBR_Translucent.MDL, and every mesh must be triangulated. If you want to add a model you got from somewhere else like an asset store, make sure to convert the assets to work in the runtime. - When placing lights in the scene, it is necesssary to set an int "preserveOriginalDrawCall" to "1" in order to keep rendering the original mesh. If another layer is setting this flag somewhere and you want to replace/remove the original mesh in your own layer, you will notice that the original mesh can't be removed without setting this flag back to "0". You can do that on your own layer, set it back to "0", but make sure your layer comes on top of the other one that sets it to true.
4,604
Markdown
79.789472
489
0.786273
Ekozmaster/NvidiaOmniverseRTXRemixTools/exts/ekozerski.rtxremixtools/ekozerski/rtxremixtools/add_model.py
import os from pathlib import Path from typing import List import omni from omni.client import make_relative_url from omni.kit.window.file_importer import get_file_importer from omni.kit.window.file_exporter import get_file_exporter import omni.usd as usd from pxr import UsdGeom, Usd, Sdf from ekozerski.rtxremixtools.utils import find_inst_hash_prim, find_source_mesh_hash_prim from ekozerski.rtxremixtools.commons import log_info from ekozerski.rtxremixtools import mesh_utils class UserCache: LAST_OPENED_MODEL = None def open_export_dialog_for_captured_mesh(prim_path, mesh): def setup_references_in_stage(current_stage, reference_file_location): _, mesh_hash, __ = Usd.Prim.GetName(mesh.GetParent()).split('_') xform_prim_path = f'/RootNode/meshes/mesh_{mesh_hash}/Xform_{mesh_hash}_0' omni.kit.commands.execute('CreatePrim', prim_type='Xform', prim_path=xform_prim_path) editing_layer = current_stage.GetEditTarget().GetLayer() relative_file_path = make_relative_url(editing_layer.realPath, reference_file_location) omni.kit.commands.execute('AddReference', stage=current_stage, prim_path=Sdf.Path(xform_prim_path), reference=Sdf.Reference(relative_file_path) ) selection = omni.usd.get_context().get_selection() selection.clear_selected_prim_paths() source_layer = mesh.GetPrimStack()[-1].layer source_layer.Reload() selection.set_selected_prim_paths([xform_prim_path], False) def file_export_handler(filename: str, dirname: str, extension: str = "", selections: List[str] = []): stage = Usd.Stage.CreateInMemory() root_xform = UsdGeom.Xform.Define(stage, '/root').GetPrim() stage.SetDefaultPrim(root_xform) new_mesh = UsdGeom.Mesh.Define(stage, f'/root/{prim_path.rsplit("/", 1)[-1]}') needed_attr_names = ['doubleSided', 'extent', 'faceVertexCounts', 'faceVertexIndices', 'normals', 'points', 'primvars:st'] [ new_mesh.GetPrim().CreateAttribute(attr.GetName(), attr.GetTypeName()).Set(attr.Get()) for attr in mesh.GetAttributes() if attr.Get() and attr.GetName() in needed_attr_names ] mesh_utils.convert_mesh_to_vertex_interpolation_mode(new_mesh) ctx = usd.get_context() current_stage = ctx.get_stage() upAxis = UsdGeom.GetStageUpAxis(current_stage) UsdGeom.SetStageUpAxis(stage, upAxis) save_location = dirname + filename + extension stage.Export(save_location) setup_references_in_stage(current_stage, save_location) log_info(f"> Exporting {prim_path} in '{save_location}'") source_layer = mesh.GetPrimStack()[-1].layer rtx_remix_path_parts = source_layer.realPath.split(os.path.join("rtx-remix"), 1) if len(rtx_remix_path_parts) > 1: rtx_remix_path = os.path.join(rtx_remix_path_parts[0], "rtx-remix", "mods", "gameReadyAssets") else: rtx_remix_path = source_layer.realPath rtx_remix_path = os.path.join(rtx_remix_path, "CustomMesh") file_exporter = get_file_exporter() file_exporter.show_window( title=f'Export "{prim_path}"', export_button_label="Save", export_handler=file_export_handler, filename_url=rtx_remix_path, ) def copy_original_mesh(prim_path, mesh, output_path): stage = Usd.Stage.CreateInMemory() root_xform = UsdGeom.Xform.Define(stage, '/root').GetPrim() stage.SetDefaultPrim(root_xform) new_mesh = UsdGeom.Mesh.Define(stage, f'/root/{prim_path.rsplit("/", 1)[-1]}') needed_attr_names = ['doubleSided', 'extent', 'faceVertexCounts', 'faceVertexIndices', 'normals', 'points', 'primvars:st'] [ new_mesh.GetPrim().CreateAttribute(attr.GetName(), attr.GetTypeName()).Set(attr.Get()) for attr in mesh.GetAttributes() if attr.Get() and attr.GetName() in needed_attr_names ] mesh_utils.convert_mesh_to_vertex_interpolation_mode(new_mesh) ctx = usd.get_context() current_stage = ctx.get_stage() upAxis = UsdGeom.GetStageUpAxis(current_stage) UsdGeom.SetStageUpAxis(stage, upAxis) stage.Export(output_path) def setup_references_in_stage(mesh, current_stage, reference_file_location): inst_hash_prim = find_inst_hash_prim(mesh) _, mesh_hash, __ = Usd.Prim.GetName(inst_hash_prim).split('_') export_prim_name = os.path.basename(reference_file_location).split('.', 1)[0] xform_prim_path = f'/RootNode/meshes/mesh_{mesh_hash}/{export_prim_name}' omni.kit.commands.execute('CreatePrim', prim_type='Xform', prim_path=xform_prim_path) editing_layer = current_stage.GetEditTarget().GetLayer() relative_file_path = make_relative_url(editing_layer.realPath, reference_file_location) omni.kit.commands.execute('AddReference', stage=current_stage, prim_path=Sdf.Path(xform_prim_path), reference=Sdf.Reference(relative_file_path) ) source_layer = mesh.GetPrimStack()[-1].layer source_layer.Reload() selection = omni.usd.get_context().get_selection() selection.clear_selected_prim_paths() selection.set_selected_prim_paths([xform_prim_path], False) def open_export_dialog_for_captured_mesh(prim_path, mesh): def export_mesh(filename: str, dirname: str, extension: str = "", selections: List[str] = []): file_location = dirname + filename + extension copy_original_mesh(prim_path, mesh, file_location) ctx = usd.get_context() current_stage = ctx.get_stage() setup_references_in_stage(mesh, current_stage, file_location) source_layer = mesh.GetPrimStack()[-1].layer rtx_remix_path_parts = source_layer.realPath.split(os.path.join("rtx-remix"), 1) rtx_remix_path = source_layer.realPath if len(rtx_remix_path_parts) > 1: rtx_remix_path = os.path.join(rtx_remix_path_parts[0], "rtx-remix", "mods", "gameReadyAssets") rtx_remix_path = os.path.join(rtx_remix_path, "CustomMesh") file_exporter = get_file_exporter() file_exporter.show_window( title=f'Export "{prim_path}"', export_button_label="Save", export_handler=export_mesh, filename_url=rtx_remix_path, ) def open_import_dialog_for_add_models(prim_path): def import_mesh(filename: str, dirname: str, selections: List[str] = []): # TODO: Loop through all selections and add them all to the mesh_HASH with their respective xforms correctly named without collisions. mesh_path = mesh.GetPath().pathString new_selection = list() counter = 0 for reference_file in selections: xform_name = Path(reference_file).stem new_mesh_path = mesh_path + f'/{xform_name}_{counter}' while current_stage.GetPrimAtPath(new_mesh_path).IsValid(): counter += 1 new_mesh_path = mesh_path + f'/{xform_name}_{counter}' omni.kit.commands.execute('CreatePrim', prim_type='Xform', prim_path=new_mesh_path) editing_layer = current_stage.GetEditTarget().GetLayer() relative_file_path = make_relative_url(editing_layer.realPath, reference_file) omni.kit.commands.execute('AddReference', stage=current_stage, prim_path=Sdf.Path(new_mesh_path), reference=Sdf.Reference(relative_file_path) ) new_selection.append(new_mesh_path) UserCache.LAST_OPENED_MODEL = os.path.dirname(reference_file) counter += 1 source_layer = mesh.GetPrimStack()[-1].layer source_layer.Reload() selection = omni.usd.get_context().get_selection() selection.clear_selected_prim_paths() selection.set_selected_prim_paths(new_selection, False) ctx = usd.get_context() current_stage = ctx.get_stage() inst_prim = current_stage.GetPrimAtPath(prim_path) mesh = find_source_mesh_hash_prim(current_stage, inst_prim) source_layer = mesh.GetPrimStack()[-1].layer filename_url = UserCache.LAST_OPENED_MODEL if UserCache.LAST_OPENED_MODEL is not None else source_layer.realPath file_importer = get_file_importer() file_importer.show_window( title=f'Import Models', import_button_label="Import", import_handler=import_mesh, filename_url=filename_url, ) def open_add_model_dialog(): for path in usd.get_context().get_selection().get_selected_prim_paths(): open_import_dialog_for_add_models(path) def open_mesh_replacement_setup_dialog(): for path, mesh in mesh_utils.get_selected_mesh_prims().items(): if mesh_utils.is_a_captured_mesh(mesh): open_export_dialog_for_captured_mesh(path, mesh)
8,826
Python
41.23445
142
0.660775
Ekozmaster/NvidiaOmniverseRTXRemixTools/exts/ekozerski.rtxremixtools/ekozerski/rtxremixtools/commons.py
import carb def log_info(msg: str): carb.log_info(f"[RTX Remix Tool] {msg}") def log_warn(msg: str): carb.log_warn(f"[RTX Remix Tool] {msg}") def log_error(msg: str): carb.log_error(f"[RTX Remix Tool] {msg}")
227
Python
15.285713
45
0.621145
Ekozmaster/NvidiaOmniverseRTXRemixTools/exts/ekozerski.rtxremixtools/ekozerski/rtxremixtools/extension.py
import omni.ext import omni.ui as ui from omni.kit import context_menu from omni.kit.hotkeys.core import get_hotkey_registry from omni.kit.actions.core import get_action_registry from . import commons from .rtx_context_menu import build_rtx_remix_menu # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class RtxRemixTools(omni.ext.IExt): def on_startup(self, ext_id): self.ext_id = ext_id commons.log_info(f"Starting Up") menu = {"name": "RTX Remix", "populate_fn": build_rtx_remix_menu} self._context_menu_subscription = context_menu.add_menu(menu, "MENU", "") self.hotkey_registry = get_hotkey_registry() register_actions(self.ext_id) self.select_source_mesh_hotkey = self.hotkey_registry.register_hotkey( self.ext_id, "SHIFT + F", self.ext_id, "select_source_mesh", filter=None, ) def on_shutdown(self): commons.log_info(f"Shutting Down") # remove event self._context_menu_subscription.release() self.hotkey_registry.deregister_hotkey( self.select_source_mesh_hotkey, ) deregister_actions(self.ext_id) def register_actions(extension_id): from . import select_source_mesh action_registry = get_action_registry() actions_tag = "RTX Remix Tools Actions" action_registry.register_action( extension_id, "select_source_mesh", select_source_mesh.select_source_meshes, display_name="Select Source Mesh", description="Selects the corresponding mesh_HASH the prim is related to.", tag=actions_tag, ) def deregister_actions(extension_id): action_registry = get_action_registry() action_registry.deregister_all_actions_for_extension(extension_id)
2,043
Python
31.444444
118
0.664709
Ekozmaster/NvidiaOmniverseRTXRemixTools/exts/ekozerski.rtxremixtools/ekozerski/rtxremixtools/mesh_utils.py
from collections import OrderedDict import os from pxr import UsdGeom, Usd, Sdf import omni.usd as usd from ekozerski.rtxremixtools.commons import log_error def get_selected_mesh_prims(): ctx = usd.get_context() current_stage = ctx.get_stage() selection = ctx.get_selection().get_selected_prim_paths() selected_prims = { path: current_stage.GetPrimAtPath(path) for path in selection } meshes = { prim_path: prim for prim_path, prim in selected_prims.items() if UsdGeom.Mesh(prim) } return meshes def convert_mesh_to_vertex_interpolation_mode(mesh): """ This method attemps to convert Remix meshes' interpolation mode from constant or faceVarying to vertex. If there is any faceVarying attribute, it means the data arrays (points, uvs, normals...) will have different lengths, so this script will copy data around using the faceVertexIndices array to ensure they all end up with the same length. """ # TODO: Study interpolation modes in depth to implement a decent conversion script. prim = mesh.GetPrim() primvar_api = UsdGeom.PrimvarsAPI(prim) primvars = {var for var in primvar_api.GetPrimvars()} face_varying_primvars = [v for v in primvars if v.GetInterpolation() == UsdGeom.Tokens.faceVarying] if face_varying_primvars or mesh.GetNormalsInterpolation() == UsdGeom.Tokens.faceVarying: non_face_varying_primvars = list(primvars.difference(face_varying_primvars)) non_face_varying_primvars = [var for var in non_face_varying_primvars if var.GetInterpolation() != 'uniform'] indices = prim.GetAttribute("faceVertexIndices") # Settings points separately since it doesn't have a "SetInterpolation" like primvars. points = prim.GetAttribute("points") points_arr = points.Get() new_arr = [points_arr[i] for i in indices.Get()] points.Set(new_arr) for var in non_face_varying_primvars: original_arr = var.Get() if original_arr: new_arr = [original_arr[i] for i in indices.Get()] var.Set(new_arr) indices.Set([i for i in range(len(indices.Get()))]) [var.SetInterpolation(UsdGeom.Tokens.vertex) for var in primvars] mesh.SetNormalsInterpolation(UsdGeom.Tokens.vertex) def convert_uv_primvars_to_st(mesh): # https://github.com/NVIDIAGameWorks/dxvk-remix/blob/ebb0ecfd638d6a32ab5f10708b5b07bc763cf79b/src/dxvk/rtx_render/rtx_mod_usd.cpp#L696 # https://github.com/Kim2091/RTXRemixTools/blob/8ae25224ef8d1d284f3e208f671b2ce6a35b82af/RemixMeshConvert/For%20USD%20Composer/RemixMeshConvert_OV.py#L4 known_uv_names = [ 'primvars:st', 'primvars:uv', 'primvars:st0', 'primvars:st1', 'primvars:st2', 'primvars:UVMap', 'primvars:UVChannel_1', 'primvars:map1', ] # Preserving the order of found primvars to use the first one, in case a primvars:st can't be found. primvar_api = UsdGeom.PrimvarsAPI(mesh) uv_primvars = OrderedDict( (primvar.GetName(), primvar) for primvar in primvar_api.GetPrimvars() if primvar.GetTypeName().role == 'TextureCoordinate' or primvar.GetName() in known_uv_names ) if not uv_primvars: return # Picking only one UV and blowing up everything else as the runtime only reads the first anyway. considered_uv = uv_primvars.get('primvars:st') or next(iter(uv_primvars.values())) uv_data = considered_uv.Get() [primvar_api.RemovePrimvar(uv_name) for uv_name in uv_primvars.keys()] # Recreating the primvar with appropriate name, type and role new_uv_primvar = primvar_api.CreatePrimvar('primvars:st', Sdf.ValueTypeNames.TexCoord2fArray, UsdGeom.Tokens.vertex) new_uv_primvar.Set(uv_data) def remove_unused_primvars(mesh): unused_primvar_names = [ 'primvars:displayColor', 'primvars:displayOpacity', ] primvar_api = UsdGeom.PrimvarsAPI(mesh) [primvar_api.RemovePrimvar(uv_name) for uv_name in unused_primvar_names] def fix_meshes_in_file(usd_file_path): stage = Usd.Stage.Open(usd_file_path) mesh_prims = [prim for prim in stage.TraverseAll() if UsdGeom.Mesh(prim)] for prim in mesh_prims: faceVertices = prim.GetAttribute("faceVertexCounts").Get() if not faceVertices or not all({x == 3 for x in faceVertices}): log_error(f"Mesh {prim.GetPath()} in '{usd_file_path}' hasn't been triangulated and this tools doesn't do that for you yet :(") continue convert_mesh_to_vertex_interpolation_mode(UsdGeom.Mesh(prim)) convert_uv_primvars_to_st(UsdGeom.Mesh(prim)) remove_unused_primvars(UsdGeom.Mesh(prim)) stage.Save() def is_a_captured_mesh(mesh): """ Returns True if the Mesh's defining USD file is located in the captures folder. """ return os.path.normpath("captures/meshes") in os.path.normpath(mesh.GetPrimStack()[-1].layer.realPath) def fix_meshes_geometry(): meshes = {k: v for k,v in get_selected_mesh_prims().items() if not is_a_captured_mesh(v)} for path, mesh in meshes.items(): source_layer = mesh.GetPrimStack()[-1].layer fix_meshes_in_file(source_layer.realPath) source_layer.Reload()
5,330
Python
39.082706
156
0.67955
Ekozmaster/NvidiaOmniverseRTXRemixTools/exts/ekozerski.rtxremixtools/ekozerski/rtxremixtools/add_material.py
import os from typing import List from omni import usd, kit from omni.kit.window.file_importer import get_file_importer from omni.client import make_relative_url from ekozerski.rtxremixtools.utils import find_source_mesh_hash_prim def open_add_material_dialog_for_prim(mesh_hash, ctx, current_stage): def create_material_from_mdl_file(filename: str, dirname: str, selections: List[str] = []): if not filename.endswith('mdl'): raise ValueError(f"The selected file '{filename}' doesn't have a mdl extension.") mesh_hash_path = mesh_hash.GetPath().pathString counter = 0 material_name = os.path.basename(filename).replace('.mdl', '') new_material_path = mesh_hash_path + f'/{material_name}_{counter}' while current_stage.GetPrimAtPath(new_material_path).IsValid(): counter += 1 new_material_path = mesh_hash_path + f'/{material_name}_{counter}' # TODO: Get material name by inspecting the MDL file rather than guessing from it's name, so users can # rename it at will. mtl_name = 'AperturePBR_Opacity' if 'Opacity' in filename else 'AperturePBR_Translucent' editing_layer = current_stage.GetEditTarget().GetLayer() relative_file_path = make_relative_url(editing_layer.realPath, os.path.join(dirname, filename)) success, _ = kit.commands.execute('CreateMdlMaterialPrimCommand', mtl_url=relative_file_path, mtl_name=mtl_name, mtl_path=new_material_path, select_new_prim=True, ) def filter_handler(filename: str, _, extension_option): if extension_option == '.mdl': return filename.lower().endswith('.mdl') return True file_importer = get_file_importer() file_importer.show_window( title=f'Select MDL File', import_button_label="Select", import_handler=create_material_from_mdl_file, file_extension_types=[(".mdl", "Opacity or Translucent MDL file")], file_filter_handler=filter_handler, ) def open_add_material_dialog(): ctx = usd.get_context() current_stage = ctx.get_stage() selection = ctx.get_selection().get_selected_prim_paths() selected_prims = { path: current_stage.GetPrimAtPath(path) for path in selection } source_meshes = [find_source_mesh_hash_prim(current_stage, prim) for prim in selected_prims.values()] source_meshes = set([mesh for mesh in source_meshes if mesh is not None]) for mesh_hash in list(source_meshes): open_add_material_dialog_for_prim(mesh_hash, ctx, current_stage)
2,650
Python
41.079364
112
0.659245
Ekozmaster/NvidiaOmniverseRTXRemixTools/exts/ekozerski.rtxremixtools/ekozerski/rtxremixtools/utils.py
from pxr import Usd from omni import usd def find_source_mesh_hash_prim(current_stage, prim): if not current_stage.GetPrimAtPath('/RootNode/meshes'): return prim search_prim = prim valid_paths = ['/RootNode/meshes', '/RootNode/instances'] while search_prim.GetParent().IsValid() and search_prim.GetParent().GetPath().pathString not in valid_paths: search_prim = search_prim.GetParent() if not search_prim: return None if 'mesh_' in Usd.Prim.GetName(search_prim): return search_prim _, mesh_hash, __ = Usd.Prim.GetName(search_prim).split('_') mesh_prim_path = f'/RootNode/meshes/mesh_{mesh_hash}' return current_stage.GetPrimAtPath(mesh_prim_path) def find_inst_hash_prim(instance_mesh): search_prim = instance_mesh root_path = '/RootNode/instances' while search_prim.GetParent().IsValid() and search_prim.GetParent().GetPath().pathString != root_path: search_prim = search_prim.GetParent() if not search_prim: return None return search_prim
1,075
Python
29.742856
112
0.665116
Ekozmaster/NvidiaOmniverseRTXRemixTools/exts/ekozerski.rtxremixtools/ekozerski/rtxremixtools/preserve_draw_calls.py
from omni import usd, kit from pxr import Sdf from ekozerski.rtxremixtools.utils import find_source_mesh_hash_prim def set_preserve_original_draw_call(enabled: bool = False): ctx = usd.get_context() current_stage = ctx.get_stage() selection = ctx.get_selection().get_selected_prim_paths() selected_prims = { path: current_stage.GetPrimAtPath(path) for path in selection } source_meshes = [find_source_mesh_hash_prim(current_stage, prim) for prim in selected_prims.values()] source_meshes = set([mesh for mesh in source_meshes if mesh is not None]) for mesh_prim in source_meshes: kit.commands.execute( 'CreateUsdAttributeCommand', prim=mesh_prim, attr_name='preserveOriginalDrawCall', attr_type=Sdf.ValueTypeNames.Int, attr_value=1 if enabled else 0 )
880
Python
32.884614
105
0.664773
Ekozmaster/NvidiaOmniverseRTXRemixTools/exts/ekozerski.rtxremixtools/ekozerski/rtxremixtools/rtx_context_menu.py
from omni.kit.ui import get_custom_glyph_code from omni import usd import omni.ui as ui from . import mesh_utils from . import add_model from . import add_material from . import preserve_draw_calls from . import select_source_mesh def _build_fix_mesh_geometry_menu_item(): tooltip = ''.join([ 'Interpolation Mode\n', 'OBS: Operation Can\'t be undone\n', ' RTX Remix runtime only supports "vertex" interpolation mode, in which "points", "normals" and "uvs" arrays ', 'must have the same length, but DCC tools usually export the mesh using "faceVarying" interpolation mode.', 'This operation reorganizes the geometry to be compatible with the runtime. See:\n', ' "Interpolation of Geometric Primitive Variables" - https://openusd.org/dev/api/class_usd_geom_primvar.html', '\n\nThis operation only applies for meshes inside the mods folder, not the captured ones.', ]) ui.MenuItem( "Fix Meshes Geometry", triggered_fn=mesh_utils.fix_meshes_geometry, enabled=any([ not mesh_utils.is_a_captured_mesh(mesh) for mesh in mesh_utils.get_selected_mesh_prims().values() ]), tooltip=tooltip ) def _build_setup_for_mesh_replacements_menu_item(): tooltip = ''.join([ "Export the original mesh to a selected location and setup the references to work within the runtime so you", " can focus on remodeling the mesh and export back at the same location." ]) ui.MenuItem( "Setup for Mesh Replacement", triggered_fn=add_model.open_mesh_replacement_setup_dialog, enabled=any([ mesh_utils.is_a_captured_mesh(mesh) for mesh in mesh_utils.get_selected_mesh_prims().values() ]), tooltip=tooltip ) def _build_add_model_menu_item(): tooltip = ''.join([ "Add external authored meshes to the prim, setting up properly to work within the runtime." ]) ui.MenuItem( "Add Model", triggered_fn=add_model.open_add_model_dialog, tooltip=tooltip, enabled=bool(usd.get_context().get_selection().get_selected_prim_paths()) ) def _build_add_material_menu_item(): tooltip = ''.join([ "Add a material defined from an external MDL file to the selected prim." ]) ui.MenuItem( "Add Material", triggered_fn=add_material.open_add_material_dialog, tooltip=tooltip, enabled=bool(usd.get_context().get_selection().get_selected_prim_paths()) ) def _build_preserve_original_draw_call_menu_item(): tooltip = ''.join([ "Add a 'custom int preserveOriginalDrawCall' attribute set to '1' to the mesh_HASH prim. Used to indicate to", " the runtime whether it should keep rendering the original mesh or not. Should be set when adding custom ", " lights without removing the original mesh from rendering." ]) ui.MenuItem( "Preserve", triggered_fn=lambda: preserve_draw_calls.set_preserve_original_draw_call(True), tooltip=tooltip, enabled=bool(usd.get_context().get_selection().get_selected_prim_paths()) ) def _build_dont_preserve_original_draw_call_menu_item(): tooltip = ''.join([ "Add a 'custom int preserveOriginalDrawCall' attribute set to '0' to the mesh_HASH prim. Used to indicate to", " the runtime whether it should keep rendering the original mesh or not. Should be set when adding custom ", " lights without removing the original mesh from rendering." ]) ui.MenuItem( "Don't Preserve", triggered_fn=lambda: preserve_draw_calls.set_preserve_original_draw_call(False), tooltip=tooltip, enabled=bool(usd.get_context().get_selection().get_selected_prim_paths()) ) def _build_select_source_meshes_menu(): tooltip = ''.join([ "Selects the corresponding mesh_HASH the prim is related to." ]) ui.MenuItem( "Select Source Mesh (Shift + F)", triggered_fn=select_source_mesh.select_source_meshes, tooltip=tooltip, enabled=bool(usd.get_context().get_selection().get_selected_prim_paths()) ) def build_rtx_remix_menu(event): icon = get_custom_glyph_code("${glyphs}/menu_create.svg") with ui.Menu(f' {icon} RTX Remix'): _build_fix_mesh_geometry_menu_item() _build_setup_for_mesh_replacements_menu_item() _build_add_model_menu_item() _build_add_material_menu_item() with ui.Menu(f'Original Draw Call Preservation'): _build_preserve_original_draw_call_menu_item() _build_dont_preserve_original_draw_call_menu_item() _build_select_source_meshes_menu()
4,736
Python
37.201613
122
0.652872
Ekozmaster/NvidiaOmniverseRTXRemixTools/exts/ekozerski.rtxremixtools/ekozerski/rtxremixtools/select_source_mesh.py
from omni import usd from ekozerski.rtxremixtools.utils import find_source_mesh_hash_prim def select_source_meshes(): ctx = usd.get_context() current_stage = ctx.get_stage() selection = ctx.get_selection().get_selected_prim_paths() selected_prims = { path: current_stage.GetPrimAtPath(path) for path in selection } source_meshes = [find_source_mesh_hash_prim(current_stage, prim) for prim in selected_prims.values()] source_meshes = set([mesh for mesh in source_meshes if mesh is not None]) paths = [mesh.GetPath().pathString for mesh in source_meshes] selection = usd.get_context().get_selection() selection.clear_selected_prim_paths() selection.set_selected_prim_paths(paths, False)
749
Python
34.714284
105
0.70494
Ekozmaster/NvidiaOmniverseRTXRemixTools/exts/ekozerski.rtxremixtools/config/extension.toml
[core] reloadable = true [package] # Semantic Versioning is used: https://semver.org/ version = "0.0.2" # Lists people or organizations that are considered the "authors" of the package. authors = ["Emanuel Kozerski"] # The title and description fields are primarily for displaying extension info in UI title = "RTX Remix Tools" description="Simple toolkit for creating remixing assets compatible with RTX Remix runtime" # Path (relative to the root) or content of readme markdown file for UI. readme = "docs/README.md" # URL of the extension source repository. repository = "https://github.com/Ekozmaster/Nvidia-Omniverse-RTX-Remix-Tools" # One of categories for UI. category = "Other" # Keywords for the extension keywords = ["Tool", "Toolkit", "Tools", "RTX", "Remix"] # Location of change log file in target (final) folder of extension, relative to the root. # More info on writing changelog: https://keepachangelog.com/en/1.0.0/ changelog="docs/CHANGELOG.md" # Preview image and icon. Folder named "data" automatically goes in git lfs (see .gitattributes file). # Preview image is shown in "Overview" of Extensions window. Screenshot of an extension might be a good preview image. preview_image = "data/preview.png" # Icon is shown in Extensions window, it is recommended to be square, of size 256x256. icon = "data/icon.png" # Use omni.ui to build simple UI [dependencies] "omni.kit.uiapp" = {} # Main python module this extension provides, it will be publicly available as "import ekozerski.rtxremixtools". [[python.module]] name = "ekozerski.rtxremixtools" [[test]] # Extra dependencies only to be used during test run dependencies = [ "omni.kit.ui_test" # UI testing extension ]
1,709
TOML
30.090909
118
0.747221
Ekozmaster/NvidiaOmniverseRTXRemixTools/exts/ekozerski.rtxremixtools/docs/CHANGELOG.md
# Changelog The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/). ## [0.0.3] - 2023-12-22 - "Add Model", "Add Material" and "Fix Mesh Geometry" also works when not in a capture scene now. - Fixed somes errors when using "Fix Mesh Geometry" option in some meshes. - Added "Shift + F" hotkey to "Select Source Mesh". - Fixed error when using "Setup for Mesh Replacement" on captures which nests original game meshes inside a "ref" Xform. - Added convertion of many "primvar:*" name variations for UV-related primvars to "primvars:st" while discarding extra UV maps. - Removing unused primvars "displayColor" and "displayOpacity". - Xforms from added models and materials now are named according to the imported file rather than Xform_HASH_x ## [0.0.2] - 2023-08-28 - Fixing relative paths converted to absolute on the "Fix Meshes Geometry" function. - Picking best UV map available between all primvars and discarding everything else in the "Fix Meshes Geometry" - Removing unused primvars when using the "Fix Meshes Geometry". - Few more bugfixes. ## [0.0.1] - 2023-08-25 - Initial version - Added "Fix Meshes Geometry" option converting interpolation mode to "vertex". - Added "Setup for Mesh Replacement" option to export the original mesh for remodeling by external DCC tools. - Added "Add Model" option to add external authored .USD models to the mesh_HASH prim. - Added "Add Material" option to add MDL materials to the mesh_HASH prim. - Added "Original Draw Call Preservation" submenu to set. - Added "Select Source Mesh" option to quickly select the mesh_HASH prim.
1,603
Markdown
56.285712
127
0.758578
rcervellione-nv/omni.rhinocompute/CONTRIBUTING.md
## Contribution Rules #### Issue Tracking * All enhancement, bugfix, or change requests must begin with the creation of a [TensorRT Issue Request](https://github.com/nvidia/TensorRT/issues). * The issue request must be reviewed by TensorRT engineers and approved prior to code review. #### Coding Guidelines - All source code contributions must strictly adhere to the [TensorRT Coding Guidelines](CODING-GUIDELINES.md). - In addition, please follow the existing conventions in the relevant file, submodule, module, and project when you add new code or when you extend/fix existing functionality. - To maintain consistency in code formatting and style, you should also run `clang-format` on the modified sources with the provided configuration file. This applies TensorRT code formatting rules to: - class, function/method, and variable/field naming - comment style - indentation - line length - Format git changes: ```bash # Commit ID is optional - if unspecified, run format on staged changes. git-clang-format --style file [commit ID/reference] ``` - Format individual source files: ```bash # -style=file : Obtain the formatting rules from .clang-format # -i : In-place modification of the processed file clang-format -style=file -i -fallback-style=none <file(s) to process> ``` - Format entire codebase (for project maintainers only): ```bash find samples plugin -iname *.h -o -iname *.c -o -iname *.cpp -o -iname *.hpp \ | xargs clang-format -style=file -i -fallback-style=none ``` - Avoid introducing unnecessary complexity into existing code so that maintainability and readability are preserved. - Try to keep pull requests (PRs) as concise as possible: - Avoid committing commented-out code. - Wherever possible, each PR should address a single concern. If there are several otherwise-unrelated things that should be fixed to reach a desired endpoint, our recommendation is to open several PRs and indicate the dependencies in the description. The more complex the changes are in a single PR, the more time it will take to review those changes. - Write commit titles using imperative mood and [these rules](https://chris.beams.io/posts/git-commit/), and reference the Issue number corresponding to the PR. Following is the recommended format for commit texts: ``` #<Issue Number> - <Commit Title> <Commit Body> ``` - Ensure that the build log is clean, meaning no warnings or errors should be present. - Ensure that all `sample_*` tests pass prior to submitting your code. - All OSS components must contain accompanying documentation (READMEs) describing the functionality, dependencies, and known issues. - See `README.md` for existing samples and plugins for reference. - All OSS components must have an accompanying test. - If introducing a new component, such as a plugin, provide a test sample to verify the functionality. - To add or disable functionality: - Add a CMake option with a default value that matches the existing behavior. - Where entire files can be included/excluded based on the value of this option, selectively include/exclude the relevant files from compilation by modifying `CMakeLists.txt` rather than using `#if` guards around the entire body of each file. - Where the functionality involves minor changes to existing files, use `#if` guards. - Make sure that you can contribute your work to open source (no license and/or patent conflict is introduced by your code). You will need to [`sign`](#signing-your-work) your commit. - Thanks in advance for your patience as we review your contributions; we do appreciate them! #### Pull Requests Developer workflow for code contributions is as follows: 1. Developers must first [fork](https://help.github.com/en/articles/fork-a-repo) the [upstream](https://github.com/nvidia/TensorRT) TensorRT OSS repository. 2. Git clone the forked repository and push changes to the personal fork. ```bash git clone https://github.com/YOUR_USERNAME/YOUR_FORK.git TensorRT # Checkout the targeted branch and commit changes # Push the commits to a branch on the fork (remote). git push -u origin <local-branch>:<remote-branch> ``` 3. Once the code changes are staged on the fork and ready for review, a [Pull Request](https://help.github.com/en/articles/about-pull-requests) (PR) can be [requested](https://help.github.com/en/articles/creating-a-pull-request) to merge the changes from a branch of the fork into a selected branch of upstream. * Exercise caution when selecting the source and target branches for the PR. Note that versioned releases of TensorRT OSS are posted to `release/` branches of the upstream repo. * Creation of a PR creation kicks off the code review process. * Atleast one TensorRT engineer will be assigned for the review. * While under review, mark your PRs as work-in-progress by prefixing the PR title with [WIP]. 4. Since there is no CI/CD process in place yet, the PR will be accepted and the corresponding issue closed only after adequate testing has been completed, manually, by the developer and/or TensorRT engineer reviewing the code. #### Signing Your Work * We require that all contributors "sign-off" on their commits. This certifies that the contribution is your original work, or you have rights to submit it under the same license, or a compatible license. * Any contribution which contains commits that are not Signed-Off will not be accepted. * To sign off on a commit you simply use the `--signoff` (or `-s`) option when committing your changes: ```bash $ git commit -s -m "Add cool feature." ``` This will append the following to your commit message: ``` Signed-off-by: Your Name <[email protected]> ``` * Full text of the DCO: ``` Developer Certificate of Origin Version 1.1 Copyright (C) 2004, 2006 The Linux Foundation and its contributors. 1 Letterman Drive Suite D4700 San Francisco, CA, 94129 Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. ``` ``` Developer's Certificate of Origin 1.1 By making a contribution to this project, I certify that: (a) The contribution was created in whole or in part by me and I have the right to submit it under the open source license indicated in the file; or (b) The contribution is based upon previous work that, to the best of my knowledge, is covered under an appropriate open source license and I have the right under that license to submit that work with modifications, whether created in whole or in part by me, under the same open source license (unless I am permitted to submit under a different license), as indicated in the file; or (c) The contribution was provided directly to me by some other person who certified (a), (b) or (c) and I have not modified it. (d) I understand and agree that this project and the contribution are public and that a record of the contribution (including all personal information I submit with it, including my sign-off) is maintained indefinitely and may be redistributed consistent with this project or the open source license(s) involved. ```
7,222
Markdown
50.22695
387
0.7545
rcervellione-nv/omni.rhinocompute/README.md
# About This is an extension designed to run in a Nvidia Omniverse application such as Create or Machinima. The extension creates a link to a Rhino.Compute Server [https://developer.rhino3d.com/guides/compute/] allowing you to run Rhino commands such as quad remesh or Grasshopper files. This is designed to be a sample to extend. there are examples for using some basic rhino command like volume and quad remesh as well as running a Grasshopper script. Use this as a starting point to integrate your grasshopper scripts and functions directly into Omniverse and create the necessary UI elements. ![Rhino Compute Image 01](exts/cerver.util.rhinocompute/data/CreateAndCompute.png "Rhino Compute and Create") # Using It - "app" - It is a folder link to the location of your *Omniverse Kit* based app. - "exts" - is the folder where you add to extension search path. (Extension Manager -> Gear Icon -> Extension Search Path). Open this folder using Visual Studio Code. It will suggest you install a few extensions that will make python experience better. Look for "cerver.util.rhinocompute" extension in extension manager inside Omniverse Create and enable it. Try applying changes to any python files, it will hot-reload and you can observe results immediately. The first time you enable it will take some time to load. this is because all of the required packages from rhino and rhino compute will be installed into your Omniverse python library via a automatic pip install. # 3rd party Libraries This project references 3rd party libraries with the following licensing Rhino.compute https://github.com/mcneel/compute.rhino3d/blob/master/LICENSE Rhino3dm https://github.com/mcneel/rhino3dm/blob/main/LICENSE Plotly https://github.com/plotly/plotly.py/blob/master/LICENSE.txt
1,794
Markdown
53.393938
309
0.795987
rcervellione-nv/omni.rhinocompute/exts/cerver.util.rhinocompute/cerver/util/rhinocompute/extension.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import omni.ext import omni.ui as ui import omni.usd from .RhinoComputeFunctions import RhinoFunctions, GrasshopperFunctions from .RhinoComputUtil import SaveSelectedAs3dm # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class MyExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def __init__(self): self.computeUrl="http://localhost:6500/" self.progressbarprog = 0 self.progbarwindow = None self.excludeLastGroupAsLayer = False def on_startup(self, ext_id): #print("[omni.RhinoCompute] MyExtension startup") def serverAddrChanged(addr): self.computeUrl = addr self._window = ui.Window("Rhino Compute Functions", width=300, height=400) with self._window.frame: with ui.VStack(): ui.Label("Compute Server Address") serverAddrUi = ui.StringField(height = 30) serverAddrUi.model.set_value(self.computeUrl) serverAddrUi.model.add_value_changed_fn(lambda m:serverAddrChanged(m.get_value_as_string())) with ui.CollapsableFrame("Util Functions", height = 0): with ui.VStack(): ui.Button("save sel as 3dm", clicked_fn=lambda: SaveSelectedAs3dm(self,"S:/test.3dm"), height=40) ui.Button("save all as 3dm", clicked_fn=lambda: RhinoFunctions.SaveAllAs3DM_UI(self), height=40) with ui.CollapsableFrame("Mesh Functions", height = 0): with ui.VStack(): ui.Button("Volume", clicked_fn=lambda: RhinoFunctions.MeshVolume(self), height=40) ui.Button("Mesh Bool Union", clicked_fn=lambda: RhinoFunctions.MeshBoolUnion(self), height=40) ui.Button("Quad Remesh", clicked_fn=lambda: RhinoFunctions.MeshQuadRemesh(self), height=40) ui.Button("Mesh Offset", clicked_fn=lambda: RhinoFunctions.MeshOffset(self), height=40) with ui.CollapsableFrame("Grasshopper Functions", height = 0): with ui.VStack(): ui.Button("Random Diamonds Script", clicked_fn=lambda: GrasshopperFunctions.randomDiamonds_UI(self), height=40) def on_shutdown(self): print("[omni.RhinoCompute] MyExtension shutdown")
3,121
Python
51.915253
135
0.664851
rcervellione-nv/omni.rhinocompute/exts/cerver.util.rhinocompute/cerver/util/rhinocompute/RhinoComputeFunctions.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import string import omni.ext import omni.ui as ui from pxr import Usd, UsdGeom import omni.usd import carb.events import omni.kit.app import os import json import time omni.kit.pipapi.install("rhino3dm") from rhino3dm import * omni.kit.pipapi.install("compute-rhino3d") import compute_rhino3d.Util import compute_rhino3d.Mesh import compute_rhino3d.Grasshopper as gh from .RhinoComputUtil import * omni.kit.pipapi.install("plotly==5.4.0") import plotly.graph_objects as go class RhinoFunctions: def ComputeServerUrl(self): return self.computeUrl def MeshVolume(self): #add the compute server location compute_rhino3d.Util.url = self.computeUrl #convert selected items to rhino mesh meshes = convertSelectedUsdMeshToRhino() vols = [] names = [] rhinoMeshes = [] #for each mesh compute the volume and then add the volume and name to a list for m in meshes: rhinoMeshes.append(m["Mesh"]) vol = compute_rhino3d.Mesh.Volume(m["Mesh"]) vols.append(vol) names.append(m["Name"]) #use plotly to plot the volumes as a pie chart fig = go.Figure( data=[go.Pie(values=vols, labels=names)], layout_title_text="the Volumes" ) fig.show() def MeshBoolUnion(self) -> None: #add the compute server location compute_rhino3d.Util.url = self.computeUrl #convert selected items to rhino mesh meshes = convertSelectedUsdMeshToRhino() #for each mesh compute the bool union rhinoMeshes = [] for m in meshes: rhinoMeshes.append(m["Mesh"]) rhinoMeshes = compute_rhino3d.Mesh.CreateBooleanUnion(rhinoMeshes) #add to the stage after converting back from rhino to USD mesh #ToDo: add UI to define prim path and names ct=0 for rm in rhinoMeshes: RhinoMeshToUsdMesh("/World/rhinoComputed/",f"BoolUnion_{ct}",rm) def MeshQuadRemesh(self)-> None: compute_rhino3d.Util.url = self.computeUrl meshes = convertSelectedUsdMeshToRhino() #setup all the params for quad remesh #ToDo: make this a UI for user parameters = { 'AdaptiveQuadCount': True, 'AdaptiveSize': 50.0, 'DetectHardEdges': True, 'GuideCurveInfluence': 0, 'PreserveMeshArrayEdgesMode': 0, 'TargetQuadCount': 2000 } names = [] rhinoMeshes = [] for m in meshes: weldVerts = compute_rhino3d.Mesh.Weld(m["Mesh"],0.5) qrm =compute_rhino3d.Mesh.QuadRemesh(weldVerts,parameters) name = m["Name"] if qrm is not None: rhinoMeshes.append(qrm) names.append(name) RhinoMeshToUsdMesh("/World/rhinoComputed/",name+"_QuadRemesh",qrm) else: warning(f"QuadRemesh Failed on {name}") def MeshWeld(self, tol)-> None: compute_rhino3d.Util.url = self.computeUrl meshes = convertSelectedUsdMeshToRhino() names = [] rhinoMeshes = [] for m in meshes: weldVerts = compute_rhino3d.Mesh.Weld(m["Mesh"],tol) name = m["Name"] if weldVerts is not None: rhinoMeshes.append(weldVerts) names.append(name) RhinoMeshToUsdMesh("/World/rhinoComputed/",name+"_Weld",weldVerts) else: warning(f"Weld Failed on {name}") def MeshOffset(self)-> None: compute_rhino3d.Util.url = self.computeUrl meshes = convertSelectedUsdMeshToRhino() names = [] rhinoMeshes = [] for m in meshes: macf = compute_rhino3d.Mesh.Offset1(m["Mesh"],1,True) rhinoMeshes.append(macf) name = m["Name"] names.append(name) RhinoMeshToUsdMesh("/World/rhinoComputed/",name+"_offset",macf) def SaveAllAs3DM_UI(self): window_flags = ui.WINDOW_FLAGS_NO_SCROLLBAR #window_flags |= ui.WINDOW_FLAGS_NO_TITLE_BAR self.export3dmwindow = ui.Window("Export Stage As 3DM", width=300, height=130, flags=window_flags) with self.export3dmwindow.frame: with ui.VStack(): with ui.HStack(): ui.Label("Path", width=50, height = 25) path = ui.StringField( height = 25, tooltip = "Set the location and name of the file i.e c:/temp/myRhinofile.3dm") with ui.HStack( height = 35): def exLastGrpAsLayCb_changed(self, val): self.excludeLastGroupAsLayer = val print(val) exLastGrpAsLayCb = ui.CheckBox(width = 30) exLastGrpAsLayCb.model.add_value_changed_fn(lambda cb: exLastGrpAsLayCb_changed(self,cb.get_value_as_bool() ) ) ui.Label("Exlude last group as layer", width=50, height = 15) def exportbt(): SaveAllas3DM(self,path.model.get_value_as_string()) ui.Line() ui.Button("Export", clicked_fn=lambda: exportbt(), height=25) class GrasshopperFunctions: def randomDiamonds(self,uCt,vCt,rrA,rrB): compute_rhino3d.Util.url = self.computeUrl ghFile = os.path.dirname(os.path.dirname(__file__)) + "/rhinocompute/gh/randomDiamonds.ghx" selectedMeshes = convertSelectedUsdMeshToRhino() inputMesh = selectedMeshes[0]["Mesh"] # create list of input trees ghMesh = json.dumps(inputMesh.Encode()) mesh_tree = gh.DataTree("baseMesh") mesh_tree.Append([0], [ghMesh]) srfU_tree = gh.DataTree("srfU") srfU_tree.Append([0], [uCt]) srfV_tree = gh.DataTree("srfV") srfV_tree.Append([0], [vCt]) rrA_tree = gh.DataTree("RR_A") rrA_tree.Append([0], [rrA]) rrB_tree = gh.DataTree("RR_B") rrB_tree.Append([0], [rrB]) inputs = [mesh_tree, srfU_tree, srfV_tree, rrA_tree, rrB_tree] results = gh.EvaluateDefinition(ghFile, inputs) # decode results data = results['values'][0]['InnerTree']['{0}'] outMeshes = [rhino3dm.CommonObject.Decode(json.loads(item['data'])) for item in data] ct = 0 for m in outMeshes: RhinoMeshToUsdMesh("/World",f"/randomDiamonds/randomDiamonds_{ct}",m) ct+=1 def randomDiamonds_UI(self): def run(uCt,vCt,rrA,rrB): GrasshopperFunctions.randomDiamonds(self,uCt, vCt, rrA,rrB) #window_flags = ui.WINDOW_FLAGS_NO_RESIZE sliderStyle = {"border_radius":15, "background_color": 0xFFDDDDDD, "secondary_color":0xFFAAAAAA, "color":0xFF111111, "margin":3} window_flags = ui.WINDOW_FLAGS_NO_SCROLLBAR self.theWindow = ui.Window("Random Diamonds", width=300, height=200, flags=window_flags) with self.theWindow.frame: with ui.VStack(): with ui.HStack(): ui.Label("U Ct", width=40) srfU = ui.IntSlider(height= 20, min=1, max=50, style= sliderStyle ) with ui.HStack(): ui.Label("V Ct", width=40) srfV = ui.IntSlider(height= 20, min=1, max=50, style= sliderStyle ) with ui.HStack(): ui.Label("min D", width=40) rrA = ui.FloatSlider(height= 20, min=0.1, max=150, style= sliderStyle ) with ui.HStack(): ui.Label("max D", width=40) rrB = ui.FloatSlider(height= 20, min=0.1, max=150, style= sliderStyle ) srfU.model.set_value(4) srfV.model.set_value(4) rrA.model.set_value(4) rrB.model.set_value(75) srfU.model.add_value_changed_fn(lambda m:run(srfU.model.get_value_as_int(),srfV.model.get_value_as_int(),rrA.model.get_value_as_float(),rrB.model.get_value_as_float())) srfV.model.add_value_changed_fn(lambda m:run(srfU.model.get_value_as_int(),srfV.model.get_value_as_int(),rrA.model.get_value_as_float(),rrB.model.get_value_as_float())) rrA.model.add_value_changed_fn(lambda m:run(srfU.model.get_value_as_int(),srfV.model.get_value_as_int(),rrA.model.get_value_as_float(),rrB.model.get_value_as_float())) rrB.model.add_value_changed_fn(lambda m:run(srfU.model.get_value_as_int(),srfV.model.get_value_as_int(),rrA.model.get_value_as_float(),rrB.model.get_value_as_float())) ui.Line(height=10) ui.Button("Run >>", clicked_fn=lambda: GrasshopperFunctions.randomDiamonds(self, srfU.model.get_value_as_int(), srfV.model.get_value_as_int(), rrA.model.get_value_as_float(), rrB.model.get_value_as_float(), ), height=30)
9,607
Python
36.976284
184
0.584678
rcervellione-nv/omni.rhinocompute/exts/cerver.util.rhinocompute/cerver/util/rhinocompute/RhinoComputUtil.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import compute_rhino3d.Util import compute_rhino3d.Mesh import compute_rhino3d.Grasshopper as gh import rhino3dm import json import omni.ext import omni.ui as ui from pxr import Usd, UsdGeom, Gf import omni.usd import asyncio def convertSelectedUsdMeshToRhino(): context = omni.usd.get_context() stage = omni.usd.get_context().get_stage() prims = [stage.GetPrimAtPath(m) for m in context.get_selection().get_selected_prim_paths() ] #filter out prims that are not mesh selected_prims = [ prim for prim in prims if UsdGeom.Mesh(prim)] #setup var to hold the mesh, its name in the dict sDict = [] #add the converted prims to the dict for m in selected_prims: sDict.append({"Name": m.GetName(), "Mesh":UsdMeshToRhinoMesh(m)}) return sDict def UsdMeshToRhinoMesh(usdMesh): #array for the mesh items vertices = [] faces = [] #get the USD points points = UsdGeom.Mesh(usdMesh).GetPointsAttr().Get() #setup the items needed to deal with world and local transforms xform_cache = UsdGeom.XformCache() mtrx_world = xform_cache.GetLocalToWorldTransform(usdMesh) #create the rhino mesh mesh = rhino3dm.Mesh() #convert the USD points to rhino points for p in points: world_p = mtrx_world.Transform(p) mesh.Vertices.Add(world_p[0],world_p[1],world_p[2]) #faces we can extend directly into the aray becaue they are just ints faces.extend( UsdGeom.Mesh(usdMesh).GetFaceVertexIndicesAttr().Get()) faceCount = UsdGeom.Mesh(usdMesh).GetFaceVertexCountsAttr().Get() ct = 0 #add the face verts, USD uses a flat list of ints so we need to deal with #3 or 4 sided faces. USD supports ngons but that is not accounted for #ToDo: Deal with ngons for i in range(0,len(faceCount)): fc=faceCount[i] if fc is 3: mesh.Faces.AddFace(faces[ct], faces[ct+1], faces[ct+2]) if fc is 4: mesh.Faces.AddFace(faces[ct], faces[ct+1], faces[ct+2], faces[ct+3]) ct+=fc #compute normals, i dont use the USD normals here but you could mesh.Normals.ComputeNormals() mesh.Compact() return mesh def save_stage(): stage = omni.usd.get_context().get_stage() stage.GetRootLayer().Save() omni.client.usd_live_process() def RhinoMeshToUsdMesh( rootUrl, meshName, rhinoMesh: rhino3dm.Mesh , primPath=None): #get the stage stage = omni.usd.get_context().get_stage() # Create the geometry inside of "Root" meshPrimPath = rootUrl + meshName mesh = UsdGeom.Mesh.Define(stage, meshPrimPath) # Add all of the vertices points = [] for i in range(0,len(rhinoMesh.Vertices)): v = rhinoMesh.Vertices[i] points.append(Gf.Vec3f(v.X, v.Y, v.Z)) mesh.CreatePointsAttr(points) # Calculate indices for each triangle faceIndices = [] faceVertexCounts = [] for i in range(0, rhinoMesh.Faces.Count): fcount=3 curf = rhinoMesh.Faces[i] faceIndices.append(curf[0]) faceIndices.append(curf[1]) faceIndices.append(curf[2]) if curf[2] != curf[3]: faceIndices.append(curf[3]) fcount=4 #print(f"{fcount} : {curf}") faceVertexCounts.append(fcount) mesh.CreateFaceVertexIndicesAttr(faceIndices) mesh.CreateFaceVertexCountsAttr(faceVertexCounts) # Add vertex normals meshNormals = [] for n in rhinoMesh.Normals: meshNormals.append(Gf.Vec3f(n.X,n.Y,n.Z)) mesh.CreateNormalsAttr(meshNormals) def SaveRhinoFile(rhinoMeshes, path): model = rhino3dm.File3dm() [ model.Objects.AddMesh(m) for m in rhinoMeshes] model.Write(path) def SaveSelectedAs3dm(self,path): selectedMeshes = convertSelectedUsdMeshToRhino() meshobj = [d['Mesh'] for d in selectedMeshes] SaveRhinoFile(meshobj, path) def SaveAllas3DM(self, path): #get the stage stage = omni.usd.get_context().get_stage() #get all prims that are meshes meshPrims = [stage.GetPrimAtPath(prim.GetPath()) for prim in stage.Traverse() if UsdGeom.Mesh(prim)] #make a rhino file rhinoFile = rhino3dm.File3dm() uniqLayers = {} #figure out how many elements there are (to implament progress bar in future) numPrims = len(meshPrims) curPrim = 0 #loop over all the meshes for mp in meshPrims: #convert from usd mesh to rhino mesh rhinoMesh = UsdMeshToRhinoMesh(mp) objName = mp.GetName() rhinoAttr = rhino3dm.ObjectAttributes() dataOnParent = False #get the properties on the prim bimProps = None parentPrim = mp.GetParent() #see if this prim has BIM properties (from revit) if parentPrim: bimProps = mp.GetPropertiesInNamespace("BIM") dataOnParent = False #see if this prims parent has BIM properties (from revit) if not bimProps: bimProps = parentPrim.GetPropertiesInNamespace("BIM") dataOnParent = True #if no bim properties just add regular ones if not bimProps : bimProps = mp.GetProperties() dataOnParent = False for p in bimProps: try: pName = p.GetBaseName() var = p.Get() rhinoAttr.SetUserString(pName, str(var)) except Exception : pass # get the prims path and use that to create nested layers in rhino primpath = str(mp.GetPath()) sepPrimPath = primpath.split('/') sepPrimPath.pop(0) sepPrimPath.pop() # this will ajust the layer structure if the data is from the revit connector # or if you just want to prune the last group in the export dialogue if dataOnParent or self.excludeLastGroupAsLayer: sepPrimPath.pop() nestedLayerName = '::'.join(sepPrimPath) ct=0 curLayer = "" #loop over all the prim paths to created the nested layers in rhino for pp in sepPrimPath: if ct == 0: curLayer += pp else: curLayer += f"::{pp}" #check if the layer exists, if not make it if not curLayer in uniqLayers : layer = rhino3dm.Layer() if ct>0: prevLayer = curLayer.split('::') prevLayer.pop() prevLayer = '::'.join(prevLayer) layer.ParentLayerId = rhinoFile.Layers.FindIndex(uniqLayers[prevLayer]).Id layer.Color = (255,255,255,255) layer.Name = pp idx = rhinoFile.Layers.Add(layer) uniqLayers[curLayer]= int(idx) ct+=1 rhinoAttr.Name = objName #print(str(uniqLayers[nestedLayerName])) rhinoAttr.LayerIndex = int(str(uniqLayers[nestedLayerName])) #add the mesh and its attributes to teh rhino file rhinoFile.Objects.AddMesh(rhinoMesh, rhinoAttr) curPrim += 1 self.progressbarprog = curPrim/numPrims #save it all rhinoFile.Write(path) print("completed saving")
7,771
Python
30.983539
104
0.625402
vinjn/llm-metahuman/README.md
# LLM MetaHuman LLM MetaHuman is an open solution for AI-powered photorealistic digital humans. ## Preparation steps - Install [Omniverse Launcher](https://www.nvidia.com/en-us/omniverse/download/) - Inside Omniverse Launcher, Install `Audio2Face`. - Install [Epic Games Store](https://store.epicgames.com/en-US/) - Inside Epic Games Store, Install Unreal Engine 5.x. - Follow [Audio2Face to UE Live Link Plugin](https://docs.omniverse.nvidia.com/audio2face/latest/user-manual/livelink-ue-plugin.html) to connect Audi2Face to Unreal Engine. ## Launch Audio2Face headless ## Launch llm.py ## Launch Unreal Engine Metahuman
629
Markdown
32.157893
172
0.772655
vinjn/llm-metahuman/audio-client/gen_protoc.py
import os import subprocess ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) proto_src_root = os.path.normpath(os.path.join(ROOT_DIR, "proto/")) proto_dst_root = os.path.normpath(os.path.join(ROOT_DIR, ".")) proto_fpath = os.path.normpath(os.path.join(ROOT_DIR, "proto", "audio2face.proto")) cmd = [ "python", "-m", "grpc_tools.protoc", "-I", f"{proto_src_root}", f"--python_out={proto_dst_root}", f"--grpc_python_out={proto_dst_root}", f"{proto_fpath}", ] print(cmd) subprocess.call(cmd)
530
Python
22.086956
83
0.633962
vinjn/llm-metahuman/audio-client/llm.py
from openai import OpenAI from pydub import AudioSegment import gradio as gr import requests import os from litellm import completion import time import threading import queue import gradio_client as gc # XXX: increase requests speed # https://stackoverflow.com/a/72440253 requests.packages.urllib3.util.connection.HAS_IPV6 = False args = None CWD = os.getcwd() print("CWD:", CWD) VOICE_ACTORS = ["nova", "alloy", "echo", "fable", "onyx", "shimmer"] def timing_decorator(func): def wrapper(*args, **kwargs): start_time = time.time() result = func(*args, **kwargs) end_time = time.time() elapsed_time = end_time - start_time print(f"{func.__name__} cost: {elapsed_time:.2f} seconds.") return result return wrapper class A2fInstance: files_to_delete = [] instaces = [] def __init__(self, index) -> None: self.SERVICE_HEALTHY = False self.LIVELINK_SERVICE_HEALTHY = False self.index = index @timing_decorator def post(self, end_point, data=None, verbose=True): if not self.SERVICE_HEALTHY: return None if verbose: print(f"++ {end_point}") api_url = f"{self.base_url}/{end_point}" try: response = requests.post(api_url, json=data) if response and response.status_code == 200: if verbose: print(response.json()) return response.json() else: if verbose: print(f"Error: {response.status_code} - {response.text}") return {"Error": response.status_code, "Reason": response.text} except Exception as e: print(e) self.SERVICE_HEALTHY = False return None @timing_decorator def get(self, end_point, data=None, verbose=True): if not self.SERVICE_HEALTHY: return None if verbose: print(f"++ {end_point}") api_url = f"{self.base_url}/{end_point}" try: response = requests.get(api_url, json=data) if response.status_code == 200: if verbose: print(response.json()) return response.json() else: if verbose: print(f"Error: {response.status_code} - {response.text}") return {"Error": response.status_code, "Reason": response.text} except Exception as e: print(e) self.SERVICE_HEALTHY = False return None def player_setlooping(self, flag=True): self.post( "A2F/Player/SetLooping", {"a2f_player": args.a2f_player_id, "loop_audio": flag}, ) def player_play(self): self.post("A2F/Player/Play", {"a2f_player": args.a2f_player_id}) def player_pause(self): self.post("A2F/Player/Pause", {"a2f_player": args.a2f_player_id}) def player_setrootpath(self, dir_path): self.post( "A2F/Player/SetRootPath", {"a2f_player": args.a2f_player_id, "dir_path": dir_path}, ) def player_settrack(self, file_name): self.post( "A2F/Player/SetTrack", {"a2f_player": args.a2f_player_id, "file_name": file_name}, ) def player_gettracks(self): self.post("A2F/Player/GetTracks", {"a2f_player": args.a2f_player_id}) def player_gettime(self): response = self.post( "A2F/Player/GetTime", {"a2f_player": args.a2f_player_id}, False ) if response and response["status"] == "OK": return response["result"] else: return 0 def player_getrange(self): response = self.post( "A2F/Player/GetRange", {"a2f_player": args.a2f_player_id}, False ) if response and response["status"] == "OK": return response["result"]["work"] else: return (0, 0) def generatekeys(self): self.post("A2F/A2E/GenerateKeys", {"a2f_instance": args.a2f_instance_id}) def ActivateStreamLivelink(self, flag): self.post( "A2F/Exporter/ActivateStreamLivelink", {"node_path": args.a2f_livelink_id, "value": flag}, ) def IsStreamLivelinkConnected(self): response = self.post( "A2F/Exporter/IsStreamLivelinkConnected", {"node_path": args.a2f_livelink_id}, ) if response and response["status"] == "OK": return response["result"] else: return False def enable_audio_stream(self, flag): self.post( "A2F/Exporter/SetStreamLivelinkSettings", { "node_path": args.a2f_livelink_id, "values": {"enable_audio_stream": flag}, }, ) def set_livelink_ports( self, livelink_host, livelink_subject, livelink_port, livelink_audio_port, ): self.post( "A2F/Exporter/SetStreamLivelinkSettings", { "node_path": args.a2f_livelink_id, "values": { "livelink_host": livelink_host, "livelink_subject": livelink_subject, "livelink_port": livelink_port, "audio_port": livelink_audio_port, }, }, ) def get_preprocessing(self): response = self.post( "A2F/PRE/GetSettings", {"a2f_instance": args.a2f_instance_id}, ) if response and response["status"] == "OK": return response["result"] else: return {} def set_preprocessing(self, settings): settings["a2f_instance"] = args.a2f_instance_id self.post("A2F/PRE/SetSettings", settings) def get_postprocessing(self): response = self.post( "A2F/POST/GetSettings", {"a2f_instance": args.a2f_instance_id}, ) if response and response["status"] == "OK": return response["result"] else: return {} def set_postprocessing(self, settings): self.post( "A2F/POST/SetSettings", {"a2f_instance": args.a2f_instance_id, "settings": settings}, ) def setup(self): self.base_url = f"http://{args.a2f_host}:{args.a2f_port+self.index}" self.tts_voice = args.tts_voice if self.index > 0: # TODO: make it elegant self.tts_voice = VOICE_ACTORS[self.index % len(VOICE_ACTORS)] # always ping SERVICE_HEALTHY again in setup() self.SERVICE_HEALTHY = True self.ActivateStreamLivelink(True) if not self.SERVICE_HEALTHY: return self.player_setrootpath(CWD) self.player_setlooping(False) self.LIVELINK_SERVICE_HEALTHY = self.IsStreamLivelinkConnected() if not self.LIVELINK_SERVICE_HEALTHY: return self.enable_audio_stream(True) self.set_livelink_ports( args.livelink_host, f"{args.livelink_subject}-{self.index}", args.livelink_port + 10 * self.index, args.livelink_audio_port + 10 * self.index, ) pre_settings = self.get_preprocessing() pre_settings["prediction_delay"] = 0 pre_settings["blink_interval"] = 1.5 self.set_preprocessing(pre_settings) post_settings = self.get_postprocessing() post_settings["skin_strength"] = 1.3 self.set_postprocessing(post_settings) A2fInstance.instaces = [] openai_client = OpenAI() gc_client: gc.Client = None chat_ui: gr.ChatInterface = None def run_single_pipeline(a2f, answer, a2f_peer=None): global stop_current_a2f_play if not a2f_peer: a2f_peer = a2f # print(answer) mp3_file = text_to_mp3(answer, a2f.tts_voice) wav_file = mp3_to_wav(mp3_file) duration = a2f_peer.player_getrange()[1] position = a2f_peer.player_gettime() while position > 0 and position < duration: print(position, duration) if stop_current_a2f_play: print("stop_current_a2f_play") stop_current_a2f_play = False return time.sleep(1) position = a2f_peer.player_gettime() print("z") time.sleep(1) a2f.player_setrootpath(CWD) a2f.player_settrack(wav_file) # a2f_generatekeys() a2f.player_play() for file in A2fInstance.files_to_delete: try: os.remove(file) except Exception: pass A2fInstance.files_to_delete.clear() A2fInstance.files_to_delete.append(mp3_file) A2fInstance.files_to_delete.append(wav_file) current_speaker = -1 @timing_decorator def run_pipeline(answer): if args.a2f_instance_count == 1: run_single_pipeline(A2fInstance.instaces[0], answer) return global current_speaker if answer.startswith("("): current_speaker = -1 elif answer.startswith("A:"): current_speaker = 0 answer = answer[2:] elif answer.startswith("B:"): current_speaker = 1 answer = answer[2:] if current_speaker < 0 or current_speaker >= args.a2f_instance_count: return a2f = A2fInstance.instaces[current_speaker] if not a2f.SERVICE_HEALTHY: return run_single_pipeline(a2f, answer) @timing_decorator def text_to_mp3(text, voice): response = openai_client.audio.speech.create( model=args.tts_model, voice=voice, speed=args.tts_speed, input=text, ) timestamp = time.time() mp3_filename = f"{timestamp}.mp3" response.stream_to_file(mp3_filename) return mp3_filename @timing_decorator def mp3_to_wav(mp3_filename): sound = AudioSegment.from_mp3(mp3_filename) sound = sound.set_frame_rate(22050) wav_filename = f"{mp3_filename}.wav" sound.export(wav_filename, format="wav") return wav_filename @timing_decorator def get_completion(chat_history): response = completion( model=args.llm_model, messages=chat_history, api_base=args.llm_url, stream=args.llm_streaming, ) print(response) return response q = queue.Queue() cleanup_queue = False stop_current_a2f_play = False def pipeline_worker(): while True: print("--------------------------") global cleanup_queue global stop_current_a2f_play if cleanup_queue: while not q.empty(): item = q.get() q.task_done() if item == "cleanup_queue_token": break cleanup_queue = False stop_current_a2f_play = True item = q.get() if item == "cleanup_queue_token": continue print(f"Begin: {item}") run_pipeline(item) print(f"End: {item}") q.task_done() def talk_to_peer(message): if not gc_client: return result = gc_client.predict( message, api_name="/chat" # str in 'Message' Textbox component ) print(f"from peer: {result}") # chat_ui.textbox.submit(None, [result, result]) # chat_ui.textbox.submit() def predict(message, history): print("==========================") if message == "setup": str = "" for a2f in A2fInstance.instaces: a2f.setup() str += f"A2F running: {a2f.SERVICE_HEALTHY}\n" str += f"Live Link running: {a2f.LIVELINK_SERVICE_HEALTHY}\n" yield str return if message == "ping": for a2f in A2fInstance.instaces: a2f.post("") a2f.get("") yield "A2F ping" return if message == "redo": for a2f in A2fInstance.instaces: a2f.player_play() yield "A2F redo" return if message == "stop": global cleanup_queue cleanup_queue = True q.put("cleanup_queue_token") yield "stopped" return if message.startswith("peer"): items = message.split() if len(items) >= 2: gradio_port = int(items[1]) # TODO: support non localhost args.gradio_peer_url = f"http://{args.gradio_host}:{gradio_port}/" global gc_client gc_client = gc.Client(args.gradio_peer_url) yield f"I will chat with another llm-metahuman: {args.gradio_peer_url}" return history_openai_format = [] for human, assistant in history: history_openai_format.append({"role": "user", "content": human}) history_openai_format.append({"role": "assistant", "content": assistant}) history_openai_format.append({"role": "user", "content": message}) # start_time = time.time() response = get_completion(history_openai_format) yield ".." # global cleanup_queue # cleanup_queue = True # q.put("cleanup_queue_token") if args.llm_streaming: # create variables to collect the stream of chunks UNUSED_collected_chunks = [] collected_messages = [] complete_sentences = "" # iterate through the stream of events for chunk in response: # chunk_time = ( # time.time() - start_time # ) # calculate the time delay of the chunk UNUSED_collected_chunks.append(chunk) # save the event response chunk_message = chunk.choices[0].delta.content # extract the message if not chunk_message: continue collected_messages.append(chunk_message) # save the message # print( # f"Message {chunk_time:.2f} s after request: {chunk_message}" # ) # print the delay and text print(chunk_message) if chunk_message in [ ".", "!", "?", "。", "!", "?", ] or chunk_message.endswith("\n"): # if not chunk_message or "\n" in chunk_message: one_sentence = "".join([m for m in collected_messages if m is not None]) if len(one_sentence) < 10: # ignore short sentences continue collected_messages = [] complete_sentences += one_sentence q.put(one_sentence) # run_pipeline(one_sentence) yield complete_sentences talk_to_peer(one_sentence) # print the time delay and text received # print(f"Full response received {chunk_time:.2f} seconds after request") # # clean None in collected_messages # collected_messages = [m for m in collected_messages if m is not None] # full_reply_content = "".join([m for m in collected_messages]) # print(f"Full conversation received: {full_reply_content}") # yield full_reply_content else: if len(response.choices[0].message.content) == 0: return answer = response.choices[0].message.content yield answer run_pipeline(answer) def main(): import argparse parser = argparse.ArgumentParser(description="llm.py arguments") # gradio settings parser.add_argument("--a2f_instance_count", type=int, default=1) parser.add_argument("--gradio_host", default="localhost") parser.add_argument("--gradio_port", type=int, default=7860) parser.add_argument( "--gradio_peer_url", default=None, help="the gradio peer that this gradio instance will chat with. Default value is None, which means chat with a human.", ) # llm / litellm settings parser.add_argument("--llm_engine", default="gpt", choices=["gpt", "llama2"]) parser.add_argument( "--llm_model", default=None, help="https://docs.litellm.ai/docs/providers" ) parser.add_argument("--llm_url", default=None) parser.add_argument( "--llm_streaming", default=True, action=argparse.BooleanOptionalAction ) # audio2face settings parser.add_argument("--a2f_host", default="localhost") parser.add_argument("--a2f_port", default=8011, type=int) parser.add_argument("--a2f_instance_id", default="/World/audio2face/CoreFullface") parser.add_argument("--a2f_player_id", default="/World/audio2face/Player") parser.add_argument("--a2f_livelink_id", default="/World/audio2face/StreamLivelink") # tts settings parser.add_argument("--tts_model", default="tts-1", choices=["tts-1", "tts-1-hd"]) parser.add_argument("--tts_speed", default=1.1, type=float) # livelink settings parser.add_argument("--livelink_host", default="localhost") parser.add_argument("--livelink_port", default=12030, type=int) parser.add_argument("--livelink_subject", default="Audio2Face") parser.add_argument("--livelink_audio_port", default=12031, type=int) parser.add_argument( "--tts_voice", default="nova", choices=VOICE_ACTORS, help="https://platform.openai.com/docs/guides/text-to-speech", ) global args args = parser.parse_args() if not args.llm_model: if args.llm_engine == "gpt": args.llm_model = args.llm_model or "gpt-3.5-turbo" elif args.llm_engine == "llama2": args.llm_model = args.llm_model or "ollama/llama2" args.llm_url = args.llm_url or "http://localhost:11434" threading.Thread(target=pipeline_worker, daemon=True).start() for i in range(args.a2f_instance_count): a2f = A2fInstance(i) a2f.setup() A2fInstance.instaces.append(a2f) global chat_ui chat_ui = gr.ChatInterface( predict, title=f"llm-metahuman @{args.gradio_port}", examples=["hello", "tell me 3 jokes", "what's the meaning of life?"], ) chat_ui.queue().launch(server_name=args.gradio_host, server_port=args.gradio_port) q.join() if __name__ == "__main__": main()
18,138
Python
28.736066
127
0.573327
vinjn/llm-metahuman/audio-client/ref/pytts-demo.py
import pyttsx3 engine = pyttsx3.init() # object creation """ RATE""" rate = engine.getProperty("rate") # getting details of current speaking rate print(rate) # printing current voice rate engine.setProperty("rate", 125) # setting up new voice rate """VOLUME""" volume = engine.getProperty( "volume" ) # getting to know current volume level (min=0 and max=1) print(volume) # printing current volume level engine.setProperty("volume", 1.0) # setting up volume level between 0 and 1 """VOICE""" voices = engine.getProperty("voices") # getting details of current voice print(voices) engine.setProperty("voice", voices[0].id) # changing index, changes voices. o for male # engine.setProperty('voice', voices[1].id) #changing index, changes voices. 1 for female engine.say("Hello World!") engine.say("θ―΄δ»€δΉˆ current speaking rate is " + str(rate)) engine.runAndWait() engine.stop() """Saving Voice to a file""" # On linux make sure that 'espeak' and 'ffmpeg' are installed engine.save_to_file("Hello World", "test.mp3") engine.runAndWait()
1,054
Python
30.969696
91
0.721063
vinjn/llm-metahuman/audio-client/ref/minimal-chatbot.py
import random import gradio as gr def alternatingly_agree(message, history): if len(history) % 2 == 0: return f"Yes, I do think that '{message}'" else: return "I don't think so" count = 0 def textbox_update(chatui_textbox): global count count += 1 if count % 10 == 0: return "z" else: return chatui_textbox if __name__ == "__main__": with gr.ChatInterface(alternatingly_agree) as chat_ui: chat_ui.textbox.change( textbox_update, chat_ui.textbox, chat_ui.textbox, every=1, trigger_mode="once", ) chat_ui.launch()
660
Python
18.441176
58
0.554545
vinjn/llm-metahuman/audio-client/ref/portal.py
import gradio as gr def task1(input_text): return "Task 1 Result: " + input_text def task2(input_image): return "Task 2 Result" def task3(input_image): return "Task 2 Result" # interface one iface1 = gr.Interface( fn=task1, inputs="text", outputs="text", title="Multi-Page Interface" ) # interface two iface2 = gr.Interface( fn=task2, inputs="image", outputs="text", title="Multi-Page Interface" ) tts_examples = [ "I love learning machine learning", "How do you do?", ] tts_demo = gr.load( "huggingface/facebook/fastspeech2-en-ljspeech", title=None, examples=tts_examples, description="Give me something to say!", cache_examples=False, ) stt_demo = gr.load( "huggingface/facebook/wav2vec2-base-960h", title=None, inputs="mic", description="Let me try to guess what you're saying!", ) demo = gr.TabbedInterface( [iface1, iface2, tts_demo, stt_demo], ["Text-to-text", "image-to-text", "Text-to-speech", "Speech-to-text"], ) # Run the interface demo.launch(share=True)
1,054
Python
18.537037
74
0.666034
vinjn/llm-metahuman/audio-client/ref/sine-curve.py
import math import gradio as gr import plotly.express as px import numpy as np plot_end = 2 * math.pi def get_plot(period=1): global plot_end x = np.arange(plot_end - 2 * math.pi, plot_end, 0.02) y = np.sin(2*math.pi*period * x) fig = px.line(x=x, y=y) plot_end += 2 * math.pi if plot_end > 1000: plot_end = 2 * math.pi return fig with gr.Blocks() as demo: with gr.Row(): with gr.Column(): gr.Markdown("Change the value of the slider to automatically update the plot") period = gr.Slider(label="Period of plot", value=1, minimum=0, maximum=10, step=1) plot = gr.Plot(label="Plot (updates every half second)") dep = demo.load(get_plot, None, plot, every=1) period.change(get_plot, period, plot, every=1, cancels=[dep]) if __name__ == "__main__": demo.queue().launch()
871
Python
25.424242
94
0.6062
mnaskret/omni-tetGen/README.md
# omni-tetGen An omniverse extension to generate soft body meshes ![extTestBunny](https://user-images.githubusercontent.com/4333336/185104847-a556bf22-2323-4d70-8bb8-b8a57e1ec67d.gif) ## Description: omni-tetGen uses the famous tetgen mesh generator developed by Hang Si to create tetrahedral and edge meshes for soft body simulation. The extension allows for a user-friendly drag-and-drop mechanism for input mesh data in standard .obj format. Then, it runs the python tetgen wrapper to create meshes which are converted to numpy arrays and described with additional infomration like edges rest lengths or tetrahedra volumes. Generated mesh is added to the stage with additional attributes: - edge - edgesRestLengths - elem - tetrahedronsRestVolumes - inverseMasses ![Screenshot from 2022-08-17 13-22-38](https://user-images.githubusercontent.com/4333336/185106588-6f87d9be-c9f1-4ee4-add1-e3bff3a1538d.png) ## PBD .ogn node Additionally, an omniverse node with a simple Position Based Dynamics algorithm implementation with CUDA kernels is attached in order to test generated meshes. ![Screenshot from 2022-08-17 13-25-31](https://user-images.githubusercontent.com/4333336/185107000-5837f3be-8540-4c5c-884f-1eb7c01b42b8.png) ## Usage - [Install omniverse](https://www.nvidia.com/en-us/omniverse/) with e.g. create environment - Go to: Window -> Extensions -> Gear icon -> Add extension search path: `git://github.com/mnaskret/omni-tetGen.git?branch=main` - Find Tetrahedralizer in the list of extensions and turn it on (preferably with autoload) - In the Tetrahedralizer window you can drop any .obj file from Omniverse Content browser, choose preferred options and generate a cool mesh - Add a graph with PBDBasicGravity node or create your own node that utilizes mesh extra attributes to have fun with your mesh
1,824
Markdown
59.833331
491
0.800987
mnaskret/omni-tetGen/mnresearch/tetgen/extension.py
import omni.ext import omni.ui as ui import omni.kit.commands as commands import pxr from pxr import Sdf import numpy as np import tetgenExt import os import math import warp as wp class MyExtension(omni.ext.IExt): fileUrl = '' def drop_accept(url, ext): # Accept drops of specific extension only print("File dropped") return url.endswith(ext) def drop(widget, event): widget.text = event.mime_data MyExtension.fileUrl = event.mime_data def drop_area(self, ext): # If drop is acceptable, the rectangle is blue style = {} style["Rectangle"] = {"background_color": 0xFF999999} style["Rectangle:drop"] = {"background_color": 0xFF994400} stack = ui.ZStack() with stack: ui.Rectangle(style=style) text = ui.Label(f"Accepts {ext}", alignment=ui.Alignment.CENTER, word_wrap=True) self.fileUrl = stack.set_accept_drop_fn(lambda d, e=ext: MyExtension.drop_accept(d, e)) stack.set_drop_fn(lambda a, w=text: MyExtension.drop(w, a)) def createMesh(usd_context, stage, meshName): commands.execute('CreateReferenceCommand', usd_context=usd_context, path_to='/World/' + meshName, asset_path=MyExtension.fileUrl, instanceable=True) prim = stage.GetPrimAtPath('/World/' + meshName + '/' + meshName + '/' + meshName) return prim def addAttributes(stage, prim, node, elem, face, edge, normals, colors, meshName): numberOfTris = int(face.shape[0] / 3) faceCount = np.full((numberOfTris), 3) mesh = pxr.PhysicsSchemaTools.createMesh(stage, pxr.Sdf.Path('/World/' + meshName + 'Mesh'), node.tolist(), normals.tolist(), face.tolist(), faceCount.tolist()) newPrim = stage.GetPrimAtPath('/World/' + meshName + 'Mesh') velocitiesNP = np.zeros_like(node) inverseMasses = np.ones(len(node), dtype=float) edgesRestLengths = np.zeros(len(edge), dtype=float) tetrahedronsRestVolumes = np.zeros(len(elem), dtype=float) for i in range(len(edge)): edgesRestLengths[i] = np.linalg.norm(node[edge[i][0]] - node[edge[i][1]]) for i in range(len(elem)): tetrahedronPositionA = node[elem[i][0]] tetrahedronPositionB = node[elem[i][1]] tetrahedronPositionC = node[elem[i][2]] tetrahedronPositionD = node[elem[i][3]] p1 = tetrahedronPositionB - tetrahedronPositionA p2 = tetrahedronPositionC - tetrahedronPositionA p3 = tetrahedronPositionD - tetrahedronPositionA volume = wp.dot(wp.cross(p1, p2), p3) / 6.0 tetrahedronsRestVolumes[i] = volume velocitiesValue = pxr.Vt.Vec3fArray().FromNumpy(velocitiesNP) elemValue = pxr.Vt.Vec4iArray().FromNumpy(elem) edgeValue = pxr.Vt.Vec2iArray().FromNumpy(edge) edgesRestLengthsValue = pxr.Vt.FloatArray().FromNumpy(edgesRestLengths) inverseMassesValue = pxr.Vt.FloatArray().FromNumpy(inverseMasses) tetrahedronsRestVolumesValue = pxr.Vt.FloatArray().FromNumpy(tetrahedronsRestVolumes) elemAtt = newPrim.CreateAttribute('elem', Sdf.ValueTypeNames.Int4Array) edgeAtt = newPrim.CreateAttribute('edge', Sdf.ValueTypeNames.Int2Array) edgesRestLengthsAtt = newPrim.CreateAttribute('edgesRestLengths', Sdf.ValueTypeNames.FloatArray) inverseMassesAtt = newPrim.CreateAttribute('inverseMasses', Sdf.ValueTypeNames.FloatArray) tetrahedronsRestVolumesAtt = newPrim.CreateAttribute('tetrahedronsRestVolumes', Sdf.ValueTypeNames.FloatArray) velocitiesAtt = newPrim.GetAttribute('velocities') velocitiesAtt.Set(velocitiesValue) elemAtt.Set(elemValue) edgeAtt.Set(edgeValue) edgesRestLengthsAtt.Set(edgesRestLengthsValue) inverseMassesAtt.Set(inverseMassesValue) tetrahedronsRestVolumesAtt.Set(tetrahedronsRestVolumesValue) return mesh, newPrim def extractMeshDataToNP(prim): points = prim.GetAttribute('points').Get() faces = prim.GetAttribute('faceVertexIndices').Get() pointsNP = np.array(points, dtype=float) facesNP = np.array(faces, dtype=int) facesNP = facesNP.reshape((-1, 3)) return pointsNP, facesNP def setPLC(self, value): self.PLC = value def setQuality(self, value): self.Quality = value def cross(a, b): c = [a[1]*b[2] - a[2]*b[1], a[2]*b[0] - a[0]*b[2], a[0]*b[1] - a[1]*b[0]] return c def calculateNormals(node, face): numberOfTris = int(face.shape[0] / 3) normals = np.empty_like(node) for i in range(numberOfTris): pIdA = face[i][0] pIdB = face[i][1] pIdC = face[i][2] pA = node[pIdA] pB = node[pIdB] pC = node[pIdC] vA = pB - pA vB = pC - pA normal = MyExtension.cross(vA, vB) normalized = np.linalg.norm(normal) normals[pIdA] += normalized normals[pIdB] += normalized normals[pIdC] += normalized return normals def on_startup(self, ext_id): print("[mnresearch.tetgen] MyExtension startup") self._window = ui.Window("Tetrahedralizer", width=300, height=300) with self._window.frame: self.PLC = False self.Quality = False with ui.VStack(): MyExtension.drop_area(self, ".obj") with ui.HStack(): ui.Label("PLC", height=0) plcCB = ui.CheckBox(width=20) plcCB.model.add_value_changed_fn( lambda a: MyExtension.setPLC(self, a.get_value_as_bool())) with ui.HStack(): ui.Label("Quality", height=0) qualityCB = ui.CheckBox(width=20) qualityCB.model.add_value_changed_fn( lambda a: MyExtension.setQuality(self, a.get_value_as_bool())) def on_click(): print("clicked!") self.usd_context = omni.usd.get_context() self.stage = self.usd_context.get_stage() if MyExtension.fileUrl != "": meshName = MyExtension.fileUrl.split(os.sep)[-1][:-4] prim = MyExtension.createMesh(self.usd_context, self.stage, meshName) points, faces = MyExtension.extractMeshDataToNP(prim) tet = tetgenExt.TetGen(points, faces) print('Running tetGen on: ', MyExtension.fileUrl, '\nwith options:', 'PLC: ', self.PLC, '\nQuality: ', self.Quality) node, elem, face, edge = tet.tetrahedralize(quality=True, plc=True, facesout=1, edgesout=1) normals = MyExtension.calculateNormals(node, face) colors = np.ones_like(normals) face = face.ravel() mesh, newPrim = MyExtension.addAttributes(self.stage, prim, node, elem, face, edge, normals, colors, meshName) pxr.Usd.Stage.RemovePrim(self.stage, '/World/' + meshName) ui.Button("Generate tetrahedral mesh", clicked_fn=lambda: on_click()) def on_shutdown(self): print("[mnresearch.tetgen] MyExtension shutdown")
8,644
Python
38.474886
118
0.518047
mnaskret/omni-tetGen/mnresearch/tetgen/__init__.py
from .extension import *
24
Python
23.999976
24
0.791667
mnaskret/omni-tetGen/mnresearch/tetgen/PBDBasicGravityDatabase.py
"""Support for simplified access to data on nodes of type mnresearch.tetgen.PBDBasicGravity PBDBasicGravity """ import omni.graph.core as og import traceback import sys import numpy class PBDBasicGravityDatabase(og.Database): """Helper class providing simplified access to data on nodes of type mnresearch.tetgen.PBDBasicGravity Class Members: node: Node being evaluated Attribute Value Properties: Inputs: inputs.edge inputs.edgesRestLengths inputs.elem inputs.gravity inputs.ground inputs.inverseMasses inputs.ks_distance inputs.ks_volume inputs.num_substeps inputs.points inputs.sim_constraints inputs.tetrahedronsRestVolumes inputs.velocities inputs.velocity_dampening Outputs: outputs.points outputs.velocities """ # This is an internal object that provides per-class storage of a per-node data dictionary PER_NODE_DATA = {} # This is an internal object that describes unchanging attributes in a generic way # The values in this list are in no particular order, as a per-attribute tuple # Name, Type, ExtendedTypeIndex, UiName, Description, Metadata, Is_Required, DefaultValue # You should not need to access any of this data directly, use the defined database interfaces INTERFACE = og.Database._get_interface([ ('inputs:edge', 'int2[]', 0, None, 'Input edges', {og.MetadataKeys.DEFAULT: '[]'}, True, []), ('inputs:edgesRestLengths', 'float[]', 0, None, 'Input edges rest lengths', {og.MetadataKeys.DEFAULT: '[]'}, True, []), ('inputs:elem', 'int4[]', 0, None, 'Input tetrahedrons', {og.MetadataKeys.DEFAULT: '[]'}, True, []), ('inputs:gravity', 'vector3f', 0, None, 'Gravity constant', {og.MetadataKeys.DEFAULT: '[0.0, -9.8, 0.0]'}, True, [0.0, -9.8, 0.0]), ('inputs:ground', 'float', 0, None, 'Ground level', {og.MetadataKeys.DEFAULT: '-100.0'}, True, -100.0), ('inputs:inverseMasses', 'float[]', 0, None, 'Inverse masses', {og.MetadataKeys.DEFAULT: '[]'}, True, []), ('inputs:ks_distance', 'float', 0, None, '', {og.MetadataKeys.DEFAULT: '1.0'}, True, 1.0), ('inputs:ks_volume', 'float', 0, None, '', {og.MetadataKeys.DEFAULT: '1.0'}, True, 1.0), ('inputs:num_substeps', 'int', 0, None, '', {og.MetadataKeys.DEFAULT: '8'}, True, 8), ('inputs:points', 'point3f[]', 0, None, 'Input points', {og.MetadataKeys.DEFAULT: '[]'}, True, []), ('inputs:sim_constraints', 'int', 0, None, '', {og.MetadataKeys.DEFAULT: '1'}, True, 1), ('inputs:tetrahedronsRestVolumes', 'float[]', 0, None, 'Input tetrahedrons rest volumes', {og.MetadataKeys.DEFAULT: '[]'}, True, []), ('inputs:velocities', 'vector3f[]', 0, None, 'Input velocities', {og.MetadataKeys.DEFAULT: '[]'}, True, []), ('inputs:velocity_dampening', 'float', 0, None, '', {og.MetadataKeys.DEFAULT: '0.1'}, True, 0.1), ('outputs:points', 'point3f[]', 0, None, 'Output points', {}, True, None), ('outputs:velocities', 'vector3f[]', 0, None, 'Output velocities', {}, True, None), ]) @classmethod def _populate_role_data(cls): """Populate a role structure with the non-default roles on this node type""" role_data = super()._populate_role_data() role_data.inputs.gravity = og.Database.ROLE_VECTOR role_data.inputs.points = og.Database.ROLE_POINT role_data.inputs.velocities = og.Database.ROLE_VECTOR role_data.outputs.points = og.Database.ROLE_POINT role_data.outputs.velocities = og.Database.ROLE_VECTOR return role_data class ValuesForInputs(og.DynamicAttributeAccess): """Helper class that creates natural hierarchical access to input attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) @property def edge(self): data_view = og.AttributeValueHelper(self._attributes.edge) return data_view.get() @edge.setter def edge(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.edge) data_view = og.AttributeValueHelper(self._attributes.edge) data_view.set(value) self.edge_size = data_view.get_array_size() @property def edgesRestLengths(self): data_view = og.AttributeValueHelper(self._attributes.edgesRestLengths) return data_view.get() @edgesRestLengths.setter def edgesRestLengths(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.edgesRestLengths) data_view = og.AttributeValueHelper(self._attributes.edgesRestLengths) data_view.set(value) self.edgesRestLengths_size = data_view.get_array_size() @property def elem(self): data_view = og.AttributeValueHelper(self._attributes.elem) return data_view.get() @elem.setter def elem(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.elem) data_view = og.AttributeValueHelper(self._attributes.elem) data_view.set(value) self.elem_size = data_view.get_array_size() @property def gravity(self): data_view = og.AttributeValueHelper(self._attributes.gravity) return data_view.get() @gravity.setter def gravity(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.gravity) data_view = og.AttributeValueHelper(self._attributes.gravity) data_view.set(value) @property def ground(self): data_view = og.AttributeValueHelper(self._attributes.ground) return data_view.get() @ground.setter def ground(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.ground) data_view = og.AttributeValueHelper(self._attributes.ground) data_view.set(value) @property def inverseMasses(self): data_view = og.AttributeValueHelper(self._attributes.inverseMasses) return data_view.get() @inverseMasses.setter def inverseMasses(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.inverseMasses) data_view = og.AttributeValueHelper(self._attributes.inverseMasses) data_view.set(value) self.inverseMasses_size = data_view.get_array_size() @property def ks_distance(self): data_view = og.AttributeValueHelper(self._attributes.ks_distance) return data_view.get() @ks_distance.setter def ks_distance(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.ks_distance) data_view = og.AttributeValueHelper(self._attributes.ks_distance) data_view.set(value) @property def ks_volume(self): data_view = og.AttributeValueHelper(self._attributes.ks_volume) return data_view.get() @ks_volume.setter def ks_volume(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.ks_volume) data_view = og.AttributeValueHelper(self._attributes.ks_volume) data_view.set(value) @property def num_substeps(self): data_view = og.AttributeValueHelper(self._attributes.num_substeps) return data_view.get() @num_substeps.setter def num_substeps(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.num_substeps) data_view = og.AttributeValueHelper(self._attributes.num_substeps) data_view.set(value) @property def points(self): data_view = og.AttributeValueHelper(self._attributes.points) return data_view.get() @points.setter def points(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.points) data_view = og.AttributeValueHelper(self._attributes.points) data_view.set(value) self.points_size = data_view.get_array_size() @property def sim_constraints(self): data_view = og.AttributeValueHelper(self._attributes.sim_constraints) return data_view.get() @sim_constraints.setter def sim_constraints(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.sim_constraints) data_view = og.AttributeValueHelper(self._attributes.sim_constraints) data_view.set(value) @property def tetrahedronsRestVolumes(self): data_view = og.AttributeValueHelper(self._attributes.tetrahedronsRestVolumes) return data_view.get() @tetrahedronsRestVolumes.setter def tetrahedronsRestVolumes(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.tetrahedronsRestVolumes) data_view = og.AttributeValueHelper(self._attributes.tetrahedronsRestVolumes) data_view.set(value) self.tetrahedronsRestVolumes_size = data_view.get_array_size() @property def velocities(self): data_view = og.AttributeValueHelper(self._attributes.velocities) return data_view.get() @velocities.setter def velocities(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.velocities) data_view = og.AttributeValueHelper(self._attributes.velocities) data_view.set(value) self.velocities_size = data_view.get_array_size() @property def velocity_dampening(self): data_view = og.AttributeValueHelper(self._attributes.velocity_dampening) return data_view.get() @velocity_dampening.setter def velocity_dampening(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.velocity_dampening) data_view = og.AttributeValueHelper(self._attributes.velocity_dampening) data_view.set(value) class ValuesForOutputs(og.DynamicAttributeAccess): """Helper class that creates natural hierarchical access to output attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self.points_size = None self.velocities_size = None @property def points(self): data_view = og.AttributeValueHelper(self._attributes.points) return data_view.get(reserved_element_count = self.points_size) @points.setter def points(self, value): data_view = og.AttributeValueHelper(self._attributes.points) data_view.set(value) self.points_size = data_view.get_array_size() @property def velocities(self): data_view = og.AttributeValueHelper(self._attributes.velocities) return data_view.get(reserved_element_count = self.velocities_size) @velocities.setter def velocities(self, value): data_view = og.AttributeValueHelper(self._attributes.velocities) data_view.set(value) self.velocities_size = data_view.get_array_size() class ValuesForState(og.DynamicAttributeAccess): """Helper class that creates natural hierarchical access to state attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) def __init__(self, node): super().__init__(node) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT) self.inputs = PBDBasicGravityDatabase.ValuesForInputs(node, self.attributes.inputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT) self.outputs = PBDBasicGravityDatabase.ValuesForOutputs(node, self.attributes.outputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_STATE) self.state = PBDBasicGravityDatabase.ValuesForState(node, self.attributes.state, dynamic_attributes) class abi: """Class defining the ABI interface for the node type""" @staticmethod def get_node_type(): get_node_type_function = getattr(PBDBasicGravityDatabase.NODE_TYPE_CLASS, 'get_node_type', None) if callable(get_node_type_function): return get_node_type_function() return 'mnresearch.tetgen.PBDBasicGravity' @staticmethod def compute(context, node): db = PBDBasicGravityDatabase(node) try: db.inputs._setting_locked = True compute_function = getattr(PBDBasicGravityDatabase.NODE_TYPE_CLASS, 'compute', None) if callable(compute_function) and compute_function.__code__.co_argcount > 1: return compute_function(context, node) return PBDBasicGravityDatabase.NODE_TYPE_CLASS.compute(db) except Exception as error: stack_trace = "".join(traceback.format_tb(sys.exc_info()[2].tb_next)) db.log_error(f'Assertion raised in compute - {error}\n{stack_trace}', add_context=False) finally: db.inputs._setting_locked = False return False @staticmethod def initialize(context, node): PBDBasicGravityDatabase._initialize_per_node_data(node) # Set any default values the attributes have specified if not node._do_not_use(): db = PBDBasicGravityDatabase(node) db.inputs.edge = [] db.inputs.edgesRestLengths = [] db.inputs.elem = [] db.inputs.gravity = [0.0, -9.8, 0.0] db.inputs.ground = -100.0 db.inputs.inverseMasses = [] db.inputs.ks_distance = 1.0 db.inputs.ks_volume = 1.0 db.inputs.num_substeps = 8 db.inputs.points = [] db.inputs.sim_constraints = 1 db.inputs.tetrahedronsRestVolumes = [] db.inputs.velocities = [] db.inputs.velocity_dampening = 0.1 initialize_function = getattr(PBDBasicGravityDatabase.NODE_TYPE_CLASS, 'initialize', None) if callable(initialize_function): initialize_function(context, node) @staticmethod def release(node): release_function = getattr(PBDBasicGravityDatabase.NODE_TYPE_CLASS, 'release', None) if callable(release_function): release_function(node) PBDBasicGravityDatabase._release_per_node_data(node) @staticmethod def update_node_version(context, node, old_version, new_version): update_node_version_function = getattr(PBDBasicGravityDatabase.NODE_TYPE_CLASS, 'update_node_version', None) if callable(update_node_version_function): return update_node_version_function(context, node, old_version, new_version) return False @staticmethod def initialize_type(node_type): initialize_type_function = getattr(PBDBasicGravityDatabase.NODE_TYPE_CLASS, 'initialize_type', None) needs_initializing = True if callable(initialize_type_function): needs_initializing = initialize_type_function(node_type) if needs_initializing: node_type.set_metadata(og.MetadataKeys.EXTENSION, "mnresearch.tetgen") node_type.set_metadata(og.MetadataKeys.UI_NAME, "PBDBasicGravity") node_type.set_metadata(og.MetadataKeys.DESCRIPTION, "PBDBasicGravity") node_type.set_metadata(og.MetadataKeys.LANGUAGE, "Python") PBDBasicGravityDatabase.INTERFACE.add_to_node_type(node_type) @staticmethod def on_connection_type_resolve(node): on_connection_type_resolve_function = getattr(PBDBasicGravityDatabase.NODE_TYPE_CLASS, 'on_connection_type_resolve', None) if callable(on_connection_type_resolve_function): on_connection_type_resolve_function(node) NODE_TYPE_CLASS = None GENERATOR_VERSION = (1, 4, 0) TARGET_VERSION = (2, 29, 1) @staticmethod def register(node_type_class): PBDBasicGravityDatabase.NODE_TYPE_CLASS = node_type_class og.register_node_type(PBDBasicGravityDatabase.abi, 1) @staticmethod def deregister(): og.deregister_node_type("mnresearch.tetgen.PBDBasicGravity")
17,984
Python
46.204724
141
0.62411
mnaskret/omni-tetGen/mnresearch/tetgen/ogn/nodes/PBDBasicGravity.py
""" This is the implementation of the OGN node defined in OgnNewNode.ogn """ # Array or tuple values are accessed as numpy arrays so you probably need this import import math import numpy as np import warp as wp import omni.timeline from pxr import Usd, UsdGeom, Gf, Sdf @wp.kernel def boundsKer(predictedPositions: wp.array(dtype=wp.vec3), groundLevel: float): tid = wp.tid() x = predictedPositions[tid] if(x[1] < groundLevel): predictedPositions[tid] = wp.vec3(x[0], groundLevel, x[2]) @wp.kernel def PBDStepKer(positions: wp.array(dtype=wp.vec3), predictedPositions: wp.array(dtype=wp.vec3), velocities: wp.array(dtype=wp.vec3), dT: float): tid = wp.tid() x = positions[tid] xPred = predictedPositions[tid] v = (xPred - x)*(1.0/dT) x = xPred positions[tid] = x velocities[tid] = v @wp.kernel def gravityKer(positions: wp.array(dtype=wp.vec3), predictedPositions: wp.array(dtype=wp.vec3), velocities: wp.array(dtype=wp.vec3), gravityConstant: wp.vec3, velocityDampening: float, dt: float): tid = wp.tid() x = positions[tid] v = velocities[tid] velocityDampening = 1.0 - velocityDampening v = v + gravityConstant*dt*velocityDampening xPred = x + v*dt predictedPositions[tid] = xPred @wp.kernel def distanceConstraints(predictedPositions: wp.array(dtype=wp.vec3), dP: wp.array(dtype=wp.vec3), constraintsNumber: wp.array(dtype=int), edgesA: wp.array(dtype=int), edgesB: wp.array(dtype=int), edgesRestLengths: wp.array(dtype=float), inverseMasses: wp.array(dtype=float), kS: float): tid = wp.tid() edgeIndexA = edgesA[tid] edgeIndexB = edgesB[tid] edgePositionA = predictedPositions[edgeIndexA] edgePositionB = predictedPositions[edgeIndexB] edgeRestLength = edgesRestLengths[tid] dir = edgePositionA - edgePositionB len = wp.length(dir) inverseMass = inverseMasses[edgeIndexA] + inverseMasses[edgeIndexB] edgeDP = (len-edgeRestLength) * wp.normalize(dir) * kS / inverseMass wp.atomic_sub(dP, edgeIndexA, edgeDP) wp.atomic_add(dP, edgeIndexB, edgeDP) wp.atomic_add(constraintsNumber, edgeIndexA, 1) wp.atomic_add(constraintsNumber, edgeIndexB, 1) @wp.kernel def volumeConstraints(predictedPositions: wp.array(dtype=wp.vec3), dP: wp.array(dtype=wp.vec3), constraintsNumber: wp.array(dtype=int), tetrahedronsA: wp.array(dtype=int), tetrahedronsB: wp.array(dtype=int), tetrahedronsC: wp.array(dtype=int), tetrahedronsD: wp.array(dtype=int), tetrahedronsRestVolumes: wp.array(dtype=float), inverseMasses: wp.array(dtype=float), kS: float): tid = wp.tid() tetrahedronIndexA = tetrahedronsA[tid] tetrahedronIndexB = tetrahedronsB[tid] tetrahedronIndexC = tetrahedronsC[tid] tetrahedronIndexD = tetrahedronsD[tid] tetrahedronPositionA = predictedPositions[tetrahedronIndexA] tetrahedronPositionB = predictedPositions[tetrahedronIndexB] tetrahedronPositionC = predictedPositions[tetrahedronIndexC] tetrahedronPositionD = predictedPositions[tetrahedronIndexD] tetrahedronRestVolume = tetrahedronsRestVolumes[tid] p1 = tetrahedronPositionB - tetrahedronPositionA p2 = tetrahedronPositionC - tetrahedronPositionA p3 = tetrahedronPositionD - tetrahedronPositionA q2 = wp.cross(p3, p1) q1 = wp.cross(p2, p3) q3 = wp.cross(p1, p2) q0 = - q1 - q2 - q3 mA = inverseMasses[tetrahedronIndexA] mB = inverseMasses[tetrahedronIndexB] mC = inverseMasses[tetrahedronIndexC] mD = inverseMasses[tetrahedronIndexD] volume = wp.dot(wp.cross(p1, p2), p3) / 6.0 lambd = mA * wp.dot(q0, q0) + mB * wp.dot(q1, q1) + mC * wp.dot(q2, q2) + mD * wp.dot(q3, q3) lambd = kS * (volume - tetrahedronRestVolume) / lambd wp.atomic_sub(dP, tetrahedronIndexA, q0 * lambd * mA) wp.atomic_sub(dP, tetrahedronIndexB, q1 * lambd * mB) wp.atomic_sub(dP, tetrahedronIndexC, q2 * lambd * mC) wp.atomic_sub(dP, tetrahedronIndexD, q3 * lambd * mD) wp.atomic_add(constraintsNumber, tetrahedronIndexA, 1) wp.atomic_add(constraintsNumber, tetrahedronIndexB, 1) wp.atomic_add(constraintsNumber, tetrahedronIndexC, 1) wp.atomic_add(constraintsNumber, tetrahedronIndexD, 1) @wp.kernel def applyConstraints(predictedPositions: wp.array(dtype=wp.vec3), dP: wp.array(dtype=wp.vec3), constraintsNumber: wp.array(dtype=int)): tid = wp.tid() if(constraintsNumber[tid] > 0): tmpDP = dP[tid] N = float(constraintsNumber[tid]) DP = wp.vec3(tmpDP[0]/N, tmpDP[1]/N, tmpDP[2]/N) predictedPositions[tid] = predictedPositions[tid] + DP dP[tid] = wp.vec3(0.0, 0.0, 0.0) constraintsNumber[tid] = 0 class PBDBasicGravity: @staticmethod def compute(db) -> bool: timeline = omni.timeline.get_timeline_interface() device = "cuda" # # reset on stop # if (timeline.is_stopped()): # context.reset() # initialization if (timeline.is_playing()): with wp.ScopedCudaGuard(): gravity = db.inputs.gravity velocity_dampening = db.inputs.velocity_dampening ground = db.inputs.ground kSDistance = db.inputs.ks_distance kSVolume = db.inputs.ks_volume # convert node inputs to a GPU array positions = wp.array(db.inputs.points, dtype=wp.vec3, device=device) predictedPositions = wp.zeros_like(positions) velocities = wp.array(db.inputs.velocities, dtype=wp.vec3, device=device) inverseMasses = wp.array(db.inputs.inverseMasses, dtype=float, device=device) dP = wp.zeros_like(positions) constraintsNumber = wp.zeros(len(dP), dtype=int, device=device) edgesSplit = np.hsplit(db.inputs.edge, 2) edgesA = wp.array(edgesSplit[0], dtype=int, device=device) edgesB = wp.array(edgesSplit[1], dtype=int, device=device) edgesRestLengths = wp.array(db.inputs.edgesRestLengths, dtype=float, device=device) tetrahedronsSplit = np.hsplit(db.inputs.elem, 4) tetrahedronsA = wp.array(tetrahedronsSplit[0], dtype=int, device=device) tetrahedronsB = wp.array(tetrahedronsSplit[1], dtype=int, device=device) tetrahedronsC = wp.array(tetrahedronsSplit[2], dtype=int, device=device) tetrahedronsD = wp.array(tetrahedronsSplit[3], dtype=int, device=device) tetrahedronsRestVolumes = wp.array(db.inputs.tetrahedronsRestVolumes, dtype=float, device=device) # step simulation with wp.ScopedTimer("Simulate", active=False): # simulate sim_substeps = db.inputs.num_substeps sim_constraints = db.inputs.sim_constraints sim_dt = (1.0/30)/sim_substeps for i in range(sim_substeps): # simulate wp.launch(kernel=gravityKer, dim=len(positions), inputs=[positions, predictedPositions, velocities, gravity, velocity_dampening, sim_dt], device=device) for j in range(sim_constraints): wp.launch( kernel=volumeConstraints, dim=len(tetrahedronsA), inputs=[predictedPositions, dP, constraintsNumber, tetrahedronsA, tetrahedronsB, tetrahedronsC, tetrahedronsD, tetrahedronsRestVolumes, inverseMasses, kSVolume], device=device) wp.launch( kernel=distanceConstraints, dim=len(edgesA), inputs=[predictedPositions, dP, constraintsNumber, edgesA, edgesB, edgesRestLengths, inverseMasses, kSDistance], device=device) wp.launch( kernel=applyConstraints, dim=len(positions), inputs=[predictedPositions, dP, constraintsNumber], device=device) wp.launch(kernel=boundsKer, dim=len(predictedPositions), inputs=[predictedPositions, ground], device=device) wp.launch(kernel=PBDStepKer, dim=len(positions), inputs=[positions, predictedPositions, velocities, sim_dt], device=device) # write node outputs db.outputs.points = positions.numpy() db.outputs.velocities = velocities.numpy() else: with wp.ScopedTimer("Write", active=False): # timeline not playing and sim. not yet initialized, just pass through outputs db.outputs.points = db.inputs.points db.outputs.velocities = db.inputs.velocities
11,017
Python
36.349152
113
0.51829
mnaskret/omni-tetGen/mnresearch/tetgen/ogn/tests/TestPBDBasicGravity.py
import omni.kit.test import omni.graph.core as og import omni.graph.core.tests as ogts import os import carb class TestOgn(ogts.test_case_class(use_schema_prims=True, allow_implicit_graph=False)): async def test_import(self): import mnresearch.tetgen.ogn.PBDBasicGravityDatabase self.assertTrue(hasattr(mnresearch.tetgen.ogn.PBDBasicGravityDatabase, "PBDBasicGravityDatabase")) async def test_usda(self): test_file_name = "PBDBasicGravityTemplate.usda" usd_path = os.path.join(os.path.dirname(__file__), "usd", test_file_name) if not os.path.exists(usd_path): self.assertTrue(False, f"{usd_path} not found for loading test") (result, error) = await ogts.load_test_file(usd_path) self.assertTrue(result, f'{error} on {usd_path}') test_node = og.Controller.node("/TestGraph/Template_mnresearch_tetgen_PBDBasicGravity") self.assertTrue(test_node.is_valid()) node_type_name = test_node.get_type_name() self.assertEqual(og.GraphRegistry().get_node_type_version(node_type_name), 1) self.assertTrue(test_node.get_attribute_exists("inputs:edge")) input_attr = test_node.get_attribute("inputs:edge") actual_input = og.Controller.get(input_attr) ogts.verify_values([], actual_input, "mnresearch.tetgen.PBDBasicGravity USD load test - inputs:edge attribute value error") self.assertTrue(test_node.get_attribute_exists("inputs:edgesRestLengths")) input_attr = test_node.get_attribute("inputs:edgesRestLengths") actual_input = og.Controller.get(input_attr) ogts.verify_values([], actual_input, "mnresearch.tetgen.PBDBasicGravity USD load test - inputs:edgesRestLengths attribute value error") self.assertTrue(test_node.get_attribute_exists("inputs:elem")) input_attr = test_node.get_attribute("inputs:elem") actual_input = og.Controller.get(input_attr) ogts.verify_values([], actual_input, "mnresearch.tetgen.PBDBasicGravity USD load test - inputs:elem attribute value error") self.assertTrue(test_node.get_attribute_exists("inputs:gravity")) input_attr = test_node.get_attribute("inputs:gravity") actual_input = og.Controller.get(input_attr) ogts.verify_values([0.0, -9.8, 0.0], actual_input, "mnresearch.tetgen.PBDBasicGravity USD load test - inputs:gravity attribute value error") self.assertTrue(test_node.get_attribute_exists("inputs:ground")) input_attr = test_node.get_attribute("inputs:ground") actual_input = og.Controller.get(input_attr) ogts.verify_values(-100.0, actual_input, "mnresearch.tetgen.PBDBasicGravity USD load test - inputs:ground attribute value error") self.assertTrue(test_node.get_attribute_exists("inputs:inverseMasses")) input_attr = test_node.get_attribute("inputs:inverseMasses") actual_input = og.Controller.get(input_attr) ogts.verify_values([], actual_input, "mnresearch.tetgen.PBDBasicGravity USD load test - inputs:inverseMasses attribute value error") self.assertTrue(test_node.get_attribute_exists("inputs:ks_distance")) input_attr = test_node.get_attribute("inputs:ks_distance") actual_input = og.Controller.get(input_attr) ogts.verify_values(1.0, actual_input, "mnresearch.tetgen.PBDBasicGravity USD load test - inputs:ks_distance attribute value error") self.assertTrue(test_node.get_attribute_exists("inputs:ks_volume")) input_attr = test_node.get_attribute("inputs:ks_volume") actual_input = og.Controller.get(input_attr) ogts.verify_values(1.0, actual_input, "mnresearch.tetgen.PBDBasicGravity USD load test - inputs:ks_volume attribute value error") self.assertTrue(test_node.get_attribute_exists("inputs:num_substeps")) input_attr = test_node.get_attribute("inputs:num_substeps") actual_input = og.Controller.get(input_attr) ogts.verify_values(8, actual_input, "mnresearch.tetgen.PBDBasicGravity USD load test - inputs:num_substeps attribute value error") self.assertTrue(test_node.get_attribute_exists("inputs:points")) input_attr = test_node.get_attribute("inputs:points") actual_input = og.Controller.get(input_attr) ogts.verify_values([], actual_input, "mnresearch.tetgen.PBDBasicGravity USD load test - inputs:points attribute value error") self.assertTrue(test_node.get_attribute_exists("inputs:sim_constraints")) input_attr = test_node.get_attribute("inputs:sim_constraints") actual_input = og.Controller.get(input_attr) ogts.verify_values(1, actual_input, "mnresearch.tetgen.PBDBasicGravity USD load test - inputs:sim_constraints attribute value error") self.assertTrue(test_node.get_attribute_exists("inputs:tetrahedronsRestVolumes")) input_attr = test_node.get_attribute("inputs:tetrahedronsRestVolumes") actual_input = og.Controller.get(input_attr) ogts.verify_values([], actual_input, "mnresearch.tetgen.PBDBasicGravity USD load test - inputs:tetrahedronsRestVolumes attribute value error") self.assertTrue(test_node.get_attribute_exists("inputs:velocities")) input_attr = test_node.get_attribute("inputs:velocities") actual_input = og.Controller.get(input_attr) ogts.verify_values([], actual_input, "mnresearch.tetgen.PBDBasicGravity USD load test - inputs:velocities attribute value error") self.assertTrue(test_node.get_attribute_exists("inputs:velocity_dampening")) input_attr = test_node.get_attribute("inputs:velocity_dampening") actual_input = og.Controller.get(input_attr) ogts.verify_values(0.1, actual_input, "mnresearch.tetgen.PBDBasicGravity USD load test - inputs:velocity_dampening attribute value error")
5,839
Python
60.473684
150
0.71365
mnaskret/omni-tetGen/mnresearch/tetgen/nodes/__init__.py
""" Dynamically import every file in a directory tree that looks like a Python Ogn Node. This includes linked directories, which is the mechanism by which nodes can be hot-reloaded from the source tree. """ import omni.graph.core as og og.register_ogn_nodes(__file__, "mnresearch.tetgen")
290
Python
35.374996
113
0.768966
Kim2091/RTXRemixTools/README.md
# RTXRemixTools These are some tools I've made that are intended for use with Nvidia's RTX Remix. Right now I have 3: * **MagicUSDA** - Allows you to generate .usda files based on your gameReadyAssets folder * **LightAdjuster** - A simple script that allows you to adjust light intensity and color temperature in a specified .usda file * **RemixMeshConvert** - This script will convert meshes to be (more) compatible with Remix These should hopefully help with setting up mods for Remix quickly and easily.
511
Markdown
45.54545
127
0.772994
Kim2091/RTXRemixTools/LightAdjuster/LightAdjuster.py
import argparse def adjust_value(line, value_name, percentage, log_changes, i): if f'float {value_name} =' in line: parts = line.split('=') old_value = float(parts[1].strip()) new_value = old_value * percentage new_line = f'{parts[0]}= {new_value}\n' if log_changes: log_line = f'Line {i + 1}: {line.strip()} -> {new_line.strip()}' print(log_line) with open('changes.log', 'a') as log: log.write(log_line + '\n') line = new_line return line, True return line, False def adjust_file(file_path, start_line=1, log_changes=False, adjust_intensity=False, adjust_color_temperature=False, percentage=None): with open(file_path, 'r') as file: data = file.readlines() lines_changed = 0 with open(file_path, 'w') as file: for i, line in enumerate(data): if i + 1 >= start_line: if adjust_intensity: line, changed = adjust_value(line, 'intensity', percentage, log_changes, i) if changed: lines_changed += 1 if adjust_color_temperature: line, changed = adjust_value(line, 'colorTemperature', percentage, log_changes, i) if changed: lines_changed += 1 file.write(line) print(f'Completed! {lines_changed} lines changed.') if __name__ == '__main__': parser = argparse.ArgumentParser(description='Adjust the intensity and/or color temperature values in a file.') parser.add_argument('file_path', type=str, help='The path to the file to modify.') parser.add_argument('-s', '--start-line', type=int, default=1, help='The line number to start modifying at.') parser.add_argument('-l', '--log', action='store_true', help='Whether to print a log of the changed lines.') parser.add_argument('-ai', '--adjust-intensity', action='store_true', help='Whether to adjust the intensity value.') parser.add_argument('-act', '--adjust-color-temperature', action='store_true', help='Whether to adjust the color temperature value.') parser.add_argument('-p', '--percentage', type=float, required=True, help='The percentage to adjust the value by.') args = parser.parse_args() adjust_file(args.file_path, args.start_line, args.log, args.adjust_intensity, args.adjust_color_temperature, args.percentage)
2,440
Python
52.065216
137
0.609836
Kim2091/RTXRemixTools/LightAdjuster/README.md
# **Remix Light Adjuster** *Written with the assistance of Bing* This script adjusts the intensity and/or color temperature values in a file. $\color{#f7d26a}{\textsf{Please back up your usda files before running!}}$ ## Usage To use this script, run the following command: `python LightAdjuster.py file_path` where `file_path` is the path to the .usda file to modify. There are several additional options that can be used with this script: * `-s` or `--start-line` - This option allows you to specify the line number to start modifying at. The default value is 1. * `-l` or `--log` - This option enables logging of the changed lines. If this option is used, a log of the changed lines will be printed to the console and written to a file named `changes.log`. * `-p` or `--percentage` - This option specifies the percentage to adjust the value by. This option is required. * `-ai` or `--adjust-intensity` - This option enables adjustment of the intensity value using `-p`. * `-act` or `--adjust-color-temperature` - This option enables adjustment of the color temperature value using `-p`. For example, to adjust the intensity value in a file named `data.txt`, starting at line 5, and logging the changes, you would run the following command: `python adjust_file.py data.txt -s 5 -l -ai -p 0.5` This would adjust the intensity value in all lines containing `float intensity =`, starting at line 5, by multiplying it by 0.5. A log of the changed lines would be printed to the console and written to a file named `changes.log`. ## Description This script reads the specified file and modifies lines that contain either `float intensity =` or `float colorTemperature =`, depending on which value is being adjusted. The value is multiplied by the specified percentage and the line is updated with the new value. If logging is enabled, a log of the changed lines is printed to the console and written to a file named `changes.log`. After all lines have been processed, the script prints a message indicating how many lines were changed.
2,047
Markdown
55.888887
385
0.755252
Kim2091/RTXRemixTools/MagicUSDA/README.md
# Remix USDA Generator *Written with the assistance of Bing and ChatGPT* $\color{#f7d26a}{\textsf{Please back up your usda files to a separate folder before running!}}$ This is a script to generate `.usda` files from your gameReadyAssets folder. It detects any of these map types in your folder: - emissive - normal - metallic - rough ## Usage How to use this script: `python MagicUSDA.py -d path\to\gameReadyAssets` There are some additional functions: * `-o` - Change the output usda file names. * `-m` - Split the output USDA files into separate entries for each map type (e.g. mod_emissive.usda, mod_metallic.usda). Works with `-o` to change the base file name. * `-a` - Add sublayers made with `-m` to the mod.usda file. Not compatible with custom files specified by `-o`, will only modify mod.usda. Works with `-m` and `-o`. * `-g` - Toggle generating hashes for file names before the suffix. Useful for files with generic names like test.dds. Diffuse textures must be identical to Remix dumps. * `-s` - Change between the AperturePBR_Opacity and AperturePBR_Translucent material shader types. Using this, you can generate separate .usda files for normal or translucent objects easily * `-r` _**Currently broken**_ - Specify a separate folder to use as a reference for generating diffuse texture hashes. Searches for files in the reference directory based on file names from the base directory. If not provided, uses the main directory to generate hashes. Useful with folders like captures or game texture rips. The `.usda` files generated by this script serve to replace textures in your Remix games, allowing you to swap out textures and utilize additional map types to enhance the game's visuals. This script is intended to be used with original diffuse textures, which are required for it to function correctly. It generates a `mod.usda` file for use in your game through Remix. It was designed with [chaiNNer](https://chainner.app/) in mind, however you can use this with any textures you've created. Be aware that this script will overwrite any pre-existing `mod.usda` files in your directory!
2,113
Markdown
74.499997
399
0.769049
Kim2091/RTXRemixTools/MagicUSDA/MagicUSDA.py
import os import argparse import xxhash from pxr import Usd, UsdGeom, UsdShade, Sdf suffixes = ["_normal", "_emissive", "_metallic", "_rough"] def generate_hashes(file_path) -> str: # Read the file and extract the raw data. Thanks @BlueAmulet! with open(file_path, "rb") as file: data = file.read(128) dwHeight = int.from_bytes(data[12:16], "little") dwWidth = int.from_bytes(data[16:20], "little") pfFlags = int.from_bytes(data[80:84], "little") pfFourCC = data[84:88] bitCount = int.from_bytes(data[88:92], "little") mipsize = dwWidth * dwHeight if pfFlags & 0x4: # DDPF_FOURCC if pfFourCC == b"DXT1": # DXT1 is 4bpp mipsize //= 2 elif pfFlags & 0x20242: # DDPF_ALPHA | DDPF_RGB | DDPF_YUV | DDPF_LUMINANCE mipsize = mipsize * bitCount // 8 # Read the required portion of the file for hash calculation with open(file_path, "rb") as file: file.seek(128) # Move the file pointer to the appropriate position data = file.read(mipsize) hash_value = xxhash.xxh3_64(data).hexdigest() return hash_value.upper() def write_usda_file(args, file_list, suffix=None) -> [list, list]: created_files = [] modified_files = [] game_ready_assets_path = os.path.join(args.directory) # Check if there are any texture files with the specified suffix if suffix: has_suffix_files = False for file_name in file_list: if file_name.endswith(f"{suffix}.dds"): has_suffix_files = True break if not has_suffix_files: # return a blank set return [created_files, modified_files] usda_file_name = f'{args.output}{suffix if suffix else ""}.usda' usda_file_path = os.path.join(game_ready_assets_path, usda_file_name) if os.path.exists(usda_file_path): modified_files.append(usda_file_path) else: created_files.append(usda_file_path) targets = {} reference_directory = args.reference_directory if args.reference_directory else args.directory for file_name in file_list: if file_name.endswith(".dds"): # Extract only the file name from the absolute path name = os.path.basename(file_name) name, ext = os.path.splitext(name) if "_" not in name or name.endswith("_diffuse") or name.endswith("_albedo"): # Check if the generate_hashes argument is specified if args.generate_hashes: key = name.split("_")[0] # Use the prefix of the diffuse file name as the key hash_value = generate_hashes(os.path.join(reference_directory, file_name)) # Generate hash for the diffuse file else: key = os.path.basename(name) hash_value = key # Use the original name as the hash value # Check if the key contains a hash or ends with _diffuse or _albedo if not (key.isupper() and len(key) == 16) and not (key.endswith("_diffuse") or key.endswith("_albedo")): continue # Remove the _diffuse or _albedo suffix from the key and hash_value key = key.replace("_diffuse", "").replace("_albedo", "") hash_value = hash_value.replace("_diffuse", "").replace("_albedo", "") # Get the relative path from the game ready assets path to the texture file rel_file_path = os.path.relpath(file_name, args.directory) targets[key] = (rel_file_path, hash_value) # Create a new stage stage = Usd.Stage.CreateNew(usda_file_path) # Modify the existing RootNode prim root_node_prim = stage.OverridePrim("/RootNode") # Add a Looks scope as a child of the RootNode prim looks_scope = UsdGeom.Scope.Define(stage, "/RootNode/Looks") added_targets = set() for value, (rel_file_path, hash_value) in targets.items(): # Check if there is a corresponding texture file for the specified suffix if suffix and not any( file_name.endswith(f"{value}{suffix}.dds") for file_name in file_list ): continue if value in added_targets: continue else: added_targets.add(value) print(f"Adding texture {rel_file_path} with hash: {hash_value}") # Add a material prim as a child of the Looks scope material_prim = UsdShade.Material.Define( stage, f"/RootNode/Looks/mat_{hash_value.upper()}" ) material_prim.GetPrim().GetReferences().SetReferences([]) # Set the shader attributes shader_prim = UsdShade.Shader.Define( stage, f"/RootNode/Looks/mat_{hash_value.upper()}/Shader" ) shader_prim.GetPrim().CreateAttribute("info:mdl:sourceAsset", Sdf.ValueTypeNames.Asset).Set( f"{args.shader_type}.mdl" ) shader_prim.GetPrim().CreateAttribute("info:implementationSource", Sdf.ValueTypeNames.Token).Set( "sourceAsset" ) shader_prim.GetPrim().CreateAttribute("info:mdl:sourceAsset:subIdentifier", Sdf.ValueTypeNames.Token).Set( f"{args.shader_type}" ) shader_output = shader_prim.CreateOutput("output", Sdf.ValueTypeNames.Token) if not suffix or suffix == "_diffuse" or suffix == "_albedo": diffuse_texture = shader_prim.CreateInput( "diffuse_texture", Sdf.ValueTypeNames.Asset ) # Use the dynamically generated relative path for the diffuse texture diffuse_texture.Set(f".\{rel_file_path}") # Process each type of texture if not suffix or suffix == "_emissive": emissive_file_name = f"{value}_emissive.dds" # print(f"Emissive File Name: {emissive_file_name in file_list}") # print(file_list) if any(file_path.endswith(emissive_file_name) for file_path in file_list): emissive_mask_texture = shader_prim.CreateInput( "emissive_mask_texture", Sdf.ValueTypeNames.Asset ) # Use the dynamically generated relative path for the emissive texture emissive_rel_file_path = os.path.relpath(os.path.join(os.path.dirname(file_name), emissive_file_name), args.directory) emissive_mask_texture.Set(f".\{emissive_rel_file_path}") enable_emission = shader_prim.CreateInput( "enable_emission", Sdf.ValueTypeNames.Bool ) enable_emission.Set(True) emissive_intensity = shader_prim.CreateInput( "emissive_intensity", Sdf.ValueTypeNames.Float ) emissive_intensity.Set(5) if not suffix or suffix == "_metallic": metallic_file_name = f"{value}_metallic.dds" if any(file_path.endswith(metallic_file_name) for file_path in file_list): metallic_texture = shader_prim.CreateInput( "metallic_texture", Sdf.ValueTypeNames.Asset ) # Use the dynamically generated relative path for the metallic texture metallic_rel_file_path = os.path.relpath(os.path.join(os.path.dirname(file_name), metallic_file_name), args.directory) metallic_texture.Set(f".\{metallic_rel_file_path}") if not suffix or suffix == "_normal": normal_file_name = f"{value}_normal.dds" if any(file_path.endswith(normal_file_name) for file_path in file_list): normalmap_texture = shader_prim.CreateInput( "normal_texture", Sdf.ValueTypeNames.Asset ) # Use the dynamically generated relative path for the normal texture normal_rel_file_path = os.path.relpath(os.path.join(os.path.dirname(file_name), normal_file_name), args.directory) normalmap_texture.Set(f".\{normal_rel_file_path}") if not suffix or suffix == "_rough": roughness_file_name = f"{value}_rough.dds" if any(file_path.endswith(roughness_file_name) for file_path in file_list): reflectionroughness_texture = shader_prim.CreateInput( "reflectionroughness_texture", Sdf.ValueTypeNames.Asset ) # Use the dynamically generated relative path for the roughness texture roughness_rel_file_path = os.path.relpath(os.path.join(os.path.dirname(file_name), roughness_file_name), args.directory) reflectionroughness_texture.Set(f".\{roughness_rel_file_path}") # Connect shader output to material inputs material_prim.CreateInput( "mdl:displacement", Sdf.ValueTypeNames.Token ).ConnectToSource(shader_output) material_prim.CreateInput( "mdl:surface", Sdf.ValueTypeNames.Token ).ConnectToSource(shader_output) material_prim.CreateInput( "mdl:volume", Sdf.ValueTypeNames.Token ).ConnectToSource(shader_output) # Save the stage stage.Save() return [modified_files, created_files] def add_sublayers(args, file_list) -> list: modified_files = [] game_ready_assets_path = os.path.join(args.directory) mod_file_path = os.path.join(game_ready_assets_path, "mod.usda") if os.path.exists(mod_file_path): modified_files.append(mod_file_path) # Open the existing stage stage = Usd.Stage.Open(mod_file_path) # Get the existing sublayers existing_sublayers = list(stage.GetRootLayer().subLayerPaths) # Create a set of existing sublayer file names existing_sublayer_files = { os.path.basename(sublayer_path) for sublayer_path in existing_sublayers } # Add new sublayers new_sublayers = [ f"./{args.output}{suffix}.usda" for suffix in suffixes if f"{args.output}{suffix}.usda" not in existing_sublayer_files and any( os.path.basename(file_path) == f"{args.output}{suffix}.usda" for file_path in file_list ) ] stage.GetRootLayer().subLayerPaths = (existing_sublayers + new_sublayers) # Save the stage stage.Save() return modified_files if __name__ == "__main__": # ARGUMENT BLOCK parser = argparse.ArgumentParser() parser.add_argument("-d", "--directory", required=True, help="Path to directory") parser.add_argument("-o", "--output", default="mod", help="Output file name") parser.add_argument("-g", "--generate-hashes", action="store_true", help="Generates hashes for file names before the suffix") parser.add_argument("-m", "--multiple-files", action="store_true", help="Save multiple .usda files, one for each suffix type (except for diffuse)") parser.add_argument("-a", "--add-sublayers", action="store_true", help="Add sublayers made with -m to the mod.usda file. This argument only modifies the mod.usda file and does not affect any custom USDA file specified by the -o argument.") parser.add_argument("-s", "--shader-type", default="AperturePBR_Opacity", choices=["AperturePBR_Opacity", "AperturePBR_Translucent"], help="Shader type") parser.add_argument("-r", "--reference-directory", help="Path to reference directory for diffuse texture hashes") args = parser.parse_args() # Check target processing directory before use if not os.path.isdir(args.directory): raise FileNotFoundError("Specified processing directory (-d) is invalid") # Recursively scan folders file_list = [] for root, dirs, files in os.walk(args.directory): for file in files: file_list.append(os.path.join(root, file)) created_files = [] modified_files = [] # Process sublayer additions print(f"Add Sublayers: {args.add_sublayers}") if args.add_sublayers: modified_files.extend(add_sublayers(args, file_list)) # Generate unique USDA files per suffix type (except diffuse) if args.multiple_files: for suffix in suffixes: m, c = write_usda_file(args, file_list, suffix) modified_files.extend(m), created_files.extend(c) else: # Generate a single USDA file for all suffixes m, c = write_usda_file(args, file_list) modified_files.extend(m), created_files.extend(c) # Complete print("Finished!") print("Created files:") for file in created_files: print(f" - {file}") print("Modified files:") for file in modified_files: print(f" - {file}")
12,785
Python
43.242214
243
0.615722
Kim2091/RTXRemixTools/RemixMeshConvert/RemixMeshConvert.py
import argparse import logging import os import shutil import sys from pxr import Usd, UsdGeom, Gf, Sdf ALIASES = { "primvars:UVMap": ("primvars:st", Sdf.ValueTypeNames.Float2Array), "primvars:UVChannel_1": ("primvars:st1", Sdf.ValueTypeNames.Float2Array), "primvars:map1": ("primvars:st1", Sdf.ValueTypeNames.Float2Array), # Add more aliases here } def convert_face_varying_to_vertex_interpolation(usd_file_path): stage = Usd.Stage.Open(usd_file_path) mesh_prims = [prim for prim in stage.TraverseAll() if prim.IsA(UsdGeom.Mesh)] for prim in mesh_prims: mesh = UsdGeom.Mesh(prim) indices = prim.GetAttribute("faceVertexIndices") points = prim.GetAttribute("points") if not indices or not points: continue # Skip if the required attributes are missing points_arr = points.Get() modified_points = [points_arr[i] for i in indices.Get()] points.Set(modified_points) indices.Set([i for i in range(len(indices.Get()))]) mesh.SetNormalsInterpolation(UsdGeom.Tokens.vertex) primvar_api = UsdGeom.PrimvarsAPI(prim) for var in primvar_api.GetPrimvars(): if var.GetInterpolation() == UsdGeom.Tokens.faceVarying: var.SetInterpolation(UsdGeom.Tokens.vertex) # Replace aliases with "float2[] primvars:st" if var.GetName() in ALIASES: new_name, new_type_name = ALIASES[var.GetName()] new_var = primvar_api.GetPrimvar(new_name) if new_var: new_var.Set(var.Get()) else: new_var = primvar_api.CreatePrimvar(new_name, new_type_name) new_var.Set(var.Get()) new_var.SetInterpolation(UsdGeom.Tokens.vertex) # Set interpolation to vertex primvar_api.RemovePrimvar(var.GetBaseName()) return stage def process_folder(input_folder, output_folder, output_extension=None): for file_name in os.listdir(input_folder): input_file = os.path.join(input_folder, file_name) if output_extension: file_name = os.path.splitext(file_name)[0] + '.' + output_extension output_file = os.path.join(output_folder, file_name) if not os.path.isfile(input_file): continue shutil.copy(input_file, output_file) # Make a copy of the input file and rename it to the output file stage = convert_face_varying_to_vertex_interpolation(output_file) stage.Save() # Modify the output file in place logging.info(f"Processed file: {input_file} -> {output_file}") def main(): parser = argparse.ArgumentParser(description='Convert USD file formats and interpolation of meshes.') parser.add_argument('input', type=str, help='Input file or folder path') parser.add_argument('output', type=str, help='Output file or folder path') parser.add_argument('-f', '--format', type=str, choices=['usd', 'usda'], help='Output file format (usd or usda)') args = parser.parse_args() input_path = args.input output_path = args.output output_extension = args.format logging.basicConfig(level=logging.INFO, format='%(message)s') if os.path.isdir(input_path): process_folder(input_path, output_path, output_extension) else: if output_extension: output_path = os.path.splitext(output_path)[0] + '.' + output_extension shutil.copy(input_path, output_path) # Make a copy of the input file and rename it to the output file stage = convert_face_varying_to_vertex_interpolation(output_path) stage.Save() # Modify the output file in place logging.info(f"Processed file: {input_path} -> {output_path}") if __name__ == '__main__': main()
3,853
Python
37.929293
117
0.637944
Kim2091/RTXRemixTools/RemixMeshConvert/README.md
## RemixMeshConvert $\color{#f7d26a}{\textsf{Use this instead. It integrates directly into Omniverse:}}$ https://github.com/Ekozmaster/NvidiaOmniverseRTXRemixTools <details> <summary>Old description:</summary> *Based on a script originally written by E-man* $\color{#f7d26a}{\textsf{Please back up your USD and USDA files before running!}}$ **How to use this script:** To convert a single file: `python RemixMeshConvert.py [input.usda] [output.usda]` To batch convert a folder: `python RemixMeshConvert.py path\to\input\folder path\to\output\folder -f [usd or usda]` **Arguments:** `-f` `--output-format` - This controls the output format when using the script in **batch** mode **Description:** This script takes USD files as input, makes a copy named as the output, converts the interpolation of all meshes in the given USD file from face-varying to vertex, and finally saves the modified stages to the new USD files. It can process a single file or a folder of files, and also includes a dictionary of aliases for replacing specific primvar names with `float2[] primvars:st1`. **For your final exports to use in-game, please save as USD! USDA files are very inefficient in comparison** Please refer to `requirements.txt` for necessary Python libraries. </details>
1,289
Markdown
33.864864
383
0.757952
Kim2091/RTXRemixTools/RemixMeshConvert/For USD Composer/RemixMeshConvert_OV.py
from pxr import Usd, UsdGeom, Sdf ALIASES = { "primvars:UVMap": ("primvars:st", Sdf.ValueTypeNames.Float2Array), "primvars:UVChannel_1": ("primvars:st1", Sdf.ValueTypeNames.Float2Array), "primvars:map1": ("primvars:st1", Sdf.ValueTypeNames.Float2Array), # Add more aliases here } def convert_face_varying_to_vertex_interpolation(stage): mesh_prims = [prim for prim in stage.TraverseAll() if prim.IsA(UsdGeom.Mesh)] for prim in mesh_prims: mesh = UsdGeom.Mesh(prim) indices = prim.GetAttribute("faceVertexIndices") points = prim.GetAttribute("points") if not indices or not points: continue # Skip if the required attributes are missing points_arr = points.Get() modified_points = [points_arr[i] for i in indices.Get()] points.Set(modified_points) indices.Set([i for i in range(len(indices.Get()))]) mesh.SetNormalsInterpolation(UsdGeom.Tokens.vertex) primvar_api = UsdGeom.PrimvarsAPI(prim) for var in primvar_api.GetPrimvars(): if var.GetInterpolation() == UsdGeom.Tokens.faceVarying: var.SetInterpolation(UsdGeom.Tokens.vertex) # Replace aliases with "float2[] primvars:st" if var.GetName() in ALIASES: new_name, new_type_name = ALIASES[var.GetName()] new_var = primvar_api.GetPrimvar(new_name) if new_var: new_var.Set(var.Get()) else: new_var = primvar_api.CreatePrimvar(new_name, new_type_name) new_var.Set(var.Get()) new_var.SetInterpolation(UsdGeom.Tokens.vertex) # Set interpolation to vertex # Remove the old primvar directly from the UsdGeomPrimvar object var.GetAttr().Block() return stage stage = omni.usd.get_context().get_stage() convert_face_varying_to_vertex_interpolation(stage)
1,995
Python
38.137254
97
0.614035
Kim2091/RTXRemixTools/RemixMeshConvert/For USD Composer/README.md
## RemixMeshConvert *Based on a script originally written by E-man* $\color{#f7d26a}{\textsf{Please back up your USD and USDA files before running!}}$ **How to use this script:** * Install USD Composer: https://www.nvidia.com/en-us/omniverse/apps/create/ * Once launched, open the Script Editor in Window > Script Editor * Load your mesh files by dragging it into the pane on the right * Run the script For more information, look at [this thread](https://discord.com/channels/1028444667789967381/1096847508002590760/1123306156773879928) in the [RTX Remix Showcase server](https://discord.gg/rtxremix) **Description:** The RemixMeshConvert_OV script is only for usage within Omniverse's USD Composer. If you want to process files and folders independently of Omniverse, use RemixMeshConvert in the directory above this one. **For your final exports to use in-game, please save as USD! USDA files are very inefficient in comparison**
941
Markdown
46.099998
204
0.776833
gigwegbe/synthetic_data_with_nvidia_replicator_and_edge_impulse/objects_position_normal_90.py
import omni.replicator.core as rep with rep.new_layer(): # Load in asset local_path = "/home/george/Documents/synthetic_data_with_nvidia_replicator_and_edge_impulse/" TABLE_USD = f"{local_path}/asset/Collected_EastRural_Table/EastRural_Table.usd" SPOON_SMALL_USD = f"{local_path}/asset/Collected_Spoon_Small/Spoon_Small.usd" SPOON_BIG_USD = f"{local_path}/asset/Collected_Spoon_Big/Spoon_Big.usd" FORK_SMALL_USD = f"{local_path}/asset/Collected_Fork_Small/Fork_Small.usd" FORK_BIG_USD = f"{local_path}/asset/Collected_Fork_Big/Fork_Big.usd" KNIFE_USD = f"{local_path}/asset/Collected_Knife/Knife.usd" # Camera paramters cam_position = (46, 200, 25) cam_position2 = (46, 120, 25) cam_position_random = rep.distribution.uniform((0, 181, 0), (0, 300, 0)) cam_rotation = (-90, 0, 0) focus_distance = 114 focus_distance2 = 39.1 focal_length = 27 focal_length2 = 18.5 f_stop = 1.8 f_stop2 = 1.8 focus_distance_random = rep.distribution.normal(500.0, 100) # Cultery path current_cultery = SPOON_SMALL_USD # Change the item here e.g KNIFE_USD output_path = current_cultery.split(".")[0].split("/")[-1] def rect_lights(num=1): lights = rep.create.light( light_type="rect", temperature=rep.distribution.normal(6500, 500), intensity=rep.distribution.normal(0, 5000), position=(45, 110, 0), rotation=(-90, 0, 0), scale=rep.distribution.uniform(50, 100), count=num ) return lights.node def dome_lights(num=3): lights = rep.create.light( light_type="dome", temperature=rep.distribution.normal(6500, 500), intensity=rep.distribution.normal(0, 1000), position=(45, 120, 18), rotation=(225, 0, 0), count=num ) return lights.node def table(): table = rep.create.from_usd(TABLE_USD, semantics=[('class', 'table')]) with table: rep.modify.pose( position=(46, -0.0, 20), rotation=(0, -90, -90), ) return table # Define randomizer function for CULTERY assets. This randomization includes placement and rotation of the assets on the surface. def cutlery_props(size=15): instances = rep.randomizer.instantiate(rep.utils.get_usd_files( current_cultery), size=size, mode='point_instance') with instances: rep.modify.pose( position=rep.distribution.uniform( (0, 76.3651, 0), (90, 76.3651, 42)), rotation=rep.distribution.uniform( (-90, -180, 0), (-90, 180, 0)), ) return instances.node # Register randomization rep.randomizer.register(table) rep.randomizer.register(cutlery_props) rep.randomizer.register(rect_lights) rep.randomizer.register(dome_lights) # Multiple setup cameras and attach it to render products camera = rep.create.camera(focus_distance=focus_distance, focal_length=focal_length, position=cam_position, rotation=cam_rotation, f_stop=f_stop) camera2 = rep.create.camera(focus_distance=focus_distance2, focal_length=focal_length2, position=cam_position2, rotation=cam_rotation, f_stop=f_stop) # Will render 1024x1024 images and 512x512 images render_product = rep.create.render_product(camera, (1024, 1024)) render_product2 = rep.create.render_product(camera2, (512, 512)) # Initialize and attach writer writer = rep.WriterRegistry.get("BasicWriter") writer.initialize(output_dir=f"{local_path}/data/normal/{output_path}", rgb=True, bounding_box_2d_tight=False, semantic_segmentation=False) writer.attach([render_product, render_product2]) with rep.trigger.on_frame(num_frames=50): rep.randomizer.table() rep.randomizer.rect_lights(1) rep.randomizer.dome_lights(1) rep.randomizer.cutlery_props(5) # Run the simulation graph rep.orchestrator.run()
4,170
Python
37.62037
133
0.621823
gigwegbe/synthetic_data_with_nvidia_replicator_and_edge_impulse/README.md
--- description: Come learn how to generate photorealistic images in Nvidia Replicator and build object detection model using Edge Impulse. --- # The Unreasonable Effectiveness of Synthetic Data Created By: [George Igwegbe](https://www.linkedin.com/in/george-igwegbe/) Public Project Link: [GitHub](https://github.com/gigwegbe/synthetic_data_with_nvidia_replicator_and_edge_impulse) | [Edge Impulse](https://studio.edgeimpulse.com/public/187851/latest) ![Header](media_assets/cover_image.gif) ## Introduction Building an object detection model can be tricky since it requires a large dataset. Sometimes, data can be few or not diverse enough to train a robust model. Synthetic data offers an alternative to generating well-represented datasets to build a quality model. By applying domain randomization, we developed photorealistic datasets, trained a neural network, and validated the model using real datasets. To create a diverse dataset, we created a variety of simulated environments with randomized properties: changing lighting conditions, camera position, and material textures. We also show that synthetic, randomized datasets can help generalize a model to adapt to the real-world environment. ## Story We wanted to replicate the [object detection](https://www.youtube.com/watch?v=Vwv0PJPeC4s) work by Louis Moreau, but this time using synthetic data rather than real data. The project aims to demonstrate how to build and deploy the Edge Impulse object detection model using synthetic datasets generated by Nvidia Omniverse Replicator. The Replicator is an Nvidia Omniverse extension that provides means of generating physically accurate synthetic data. ## Why Synthetic Data? Computer vision tasks such as classification, object detection, and segmentation require a large-scale dataset. Data collected from some real-world applications tend to be narrow and less diverse, often collected from a single environment, and sometimes is unchanged and stays the same for the most time. In addition, data collected from a single field tend to have fewer examples of tail-end scenarios and rare events, and we cannot easily replicate these situations in the real world. Andrej Karpathy's presentation - (source: Tesla AI Day, 2021) | --- | ![](media_assets/tesla_ai_day.avif) | Consequently, models trained in a single domain are brittle and often fail when deployed in another environment; thus, it requires another training cycle to adapt to the new environment. It raises the question, how can we efficiently and cheaply collect generalized data across several domains? A simple unreasonable effective solution is Domain Randomization, which varies the texture and colour of the foreground object, the background image, the number of lights in the scene, the pose of the lights, and the camera position etc. Domain randomization can further improve the variability in the texture of synthetic data of rare events generated in the simulator. > The purpose of domain randomization is to provide enough simulated variability at training time such that at test time the model is able to generalize to real-world data.” - Tobin et al, Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World, 2017 Domain Randomization for Transferring Deep Neural Networks - source: Tobin et al, 2017) | --- | ![](media_assets/research_domain_rand.avif) | Nvidia Replicator enables us to perform Domain Randomization. The Replicator is one module within the Omniverse family, and it offers tools and workflow to generate data for various computer vision and non-visual tasks. The Replicator is a highly interoperable tool that integrates with over 40+ modelling/rendering applications across different verticals. The seamless integration is possible thanks to Pixar's Universal Scene Description(USD), which serves as a protocol for various applications such as Blender, 3DMax, Maya, Revit, C4D etc., to work with the Nvidia Replicator. ## Data-Centric Workflow Traditional machine learning workflow is often model-centric, focusing more on the model's development by iteratively improving the algorithm design, etc. In this project, we chose the Data-centric approach, where we fixed the model and iteratively improved the quality of the generated dataset. This approach is more robust since we know our model is as good as the dataset. This method hence systematically changes the dataset performance on an AI task. At its core, it is thinking about ML in terms of data, not the model. Data generation and model building workflow | --- | ![](media_assets/workflow.avif) | ## Requirements - Nvidia Omniverse Replicator - Edge Impulse Studio - Logitech Webcam HD Pro - C920 ### Hardware and Driver Setup Nvidia Omniverse Replicator is a computation-intensive application requiring a moderate-size GPU and decent RAM. My hardware setup consists of 32GB RAM, 1TB storage space and 8GB GPU with an Intel i9 processor. Hardware Specification | Hardware Specification --- | --- ![](media_assets/hardware_spec.avif) | ![](media_assets/hardware_spec2.avif) The application can run on both Windows and Linux operating systems. For this experiment, we used Ubuntu 20.04 LTS distro, given Ubuntu 18.04 is no longer supported by Nvidia Omniverse as of November 2022. In addition, we selected the appropriate Nvidia driver, v510.108.03 and installed it on a Linux machine. Software Specification | Software Specification --- | --- ![](media_assets/software_spec.avif) | ![](media_assets/software_spec2.avif) ## Experiment Setup and Data Generation The environment for the experiment consists of movable and immovable objects (dynamic and static positioning objects). The immovable object consists of Lights, a Table and two Cameras. At the same time, the movable objects are the cutlery which is a spoon, fork and knife. We will use domain randomization to alter the properties of some of the movable and immovable objects. Assets which include objects and scenes are represented in the Replicator as USD. Experimental Setup | --- | ![](media_assets/experiment_setup.avif) | Every object in Omniverse Replicator is represented as USD. A 3D model file with varying extensions such as obj, fbx, and glif can be imported into the Replicator using Nvidia Omniverse's CAD Importer extension. The extension converts the 3D files into USD. We imported our assets (Table, knife, spoon and fork) into the simulator by specifying the path of the assets. Rectangular Light | Dome Light --- | --- | ![](media_assets/light_rect.avif) | ![](media_assets/dome_light.avif) Lightning plays a crucial role in data generation. There are different built-in lighting types in the Nvidia replicator. We choose two rectangular lights and a dome light since they give us better lighting options and capabilities for generating photorealistic images. The rectangular light emulates light generated from a panel, and the dome light lets you dynamically lighten the entire scene. We randomized some light parameters such as temperature and intensity, and both parameters were sampled from a <strong>normal distribution</strong>. In addition, the scale parameter was sampled from a <strong>uniform distribution</strong> while keeping the rotation and position of the lights fixed. ```python # Lightning setup for Rectangular light and Dome light def rect_lights(num=2): lights = rep.create.light( light_type="rect", temperature=rep.distribution.normal(6500, 500), intensity=rep.distribution.normal(0, 5000), position=(-131,150,-134), rotation=(-90,0,0), scale=rep.distribution.uniform(50, 100), count=num ) return lights.node def dome_lights(num=1): lights = rep.create.light( light_type="dome", temperature=rep.distribution.normal(6500, 500), intensity=rep.distribution.normal(0, 1000), position=(0,0,0), rotation=(270,0,0), count=num ) return lights.node ``` We fixed the position and rotation, selected the tabletop materials, chose an additional <strong>Mahogany</strong> material, and alternated the material in the data generation process. ```python # Import and position the table object def table(): table = rep.create.from_usd(TABLE_USD, semantics=[('class', 'table')]) with table: rep.modify.pose( position=(-135.39745, 0, -140.25696), rotation=(0,-90,-90), ) return table ``` To improve our dataset's quality further, we chose two cameras of different resolutions, which we strategically positioned in various locations within the scene. In addition, we varied the position of the cameras in a different version of the data generation process. ```python # Multiple setup cameras and attach it to render products camera = rep.create.camera(focus_distance=focus_distance, focal_length=focal_length, position=cam_position, rotation=cam_rotation, f_stop=f_stop) camera2 = rep.create.camera(focus_distance=focus_distance2, focal_length=focal_length2, position=cam_position2, rotation=cam_rotation, f_stop=f_stop) # Will render 1024x1024 images and 512x512 images render_product = rep.create.render_product(camera1, (1024, 1024)) render_product2 = rep.create.render_product(camera2, (512, 512)) ``` Finally, for the movable objects, which include a knife, spoon and fork, we ensure that these objects can only translate within the bound of the table. So we chose a bounding position where the objects were expected to translate and rotate with the table. We sampled position and rotation from a uniform distribution while maintaining the number of movable objects generated at each iteration to be five. ```python # Define randomizer function for CULTERY assets. def cutlery_props(size=5): instances = rep.randomizer.instantiate(rep.utils.get_usd_files(current_cultery), size=size, mode='point_instance') with instances: rep.modify.pose( position=rep.distribution.uniform((-212, 76.2, -187), (-62, 76.2, -94)), rotation=rep.distribution.uniform((-90,-180, 0), (-90, 180, 0)), ) return instances.node ``` At this juncture, we have instantiated all objects in our scene. We can now run the randomizer to generate 50 images at each synthetic generation cycle. ```python # Register randomization with rep.trigger.on_frame(num_frames=50): rep.randomizer.table() rep.randomizer.rect_lights(1) rep.randomizer.dome_lights(1) rep.randomizer.cutlery_props(5) # Run the simulation graph rep.orchestrator.run() ``` To ensure we generated photorealistic images, we switched to <strong>RTXinteractive(Path Tracing)</strong> mode, which gave high-fidelity renderings. Data generation process | --- | ![](media_assets/data_generation_process2.gif) | ## Data Distribution and Model Building Data Distribution of different items | --- | ![](media_assets/data_distribution.avif) | Following the data-centric philosophy, We generated three versions of the dataset. The first version, <strong>V1</strong>, consists of generated images normal to the camera position, and <strong>V2</strong> represents images generated at an angle of 60 degrees to the camera position with a mahogany table top. <strong>V3</strong> comprises images normal to the camera position while the cutlery were suspended in space. V1 - Normal to the object | --- | ![](media_assets/v1.avif) | <table> <tr> <td>V2 - Angled to the object</td> <td>V3 - Normal to the object and object suspended in space</td> </tr> <tr> <td valign="top"><img src="media_assets/v2.avif"></td> <td valign="top"><img src="media_assets/v3.avif"></td> </tr> </table> <table> <tr> <td>Generated Dataset - V2</td> <td>Generated Dataset - V3</td> </tr> <tr> <td valign="top"><img src="media_assets/generated_dataset.avif"></td> <td valign="top"><img src="media_assets/generated_dataset2.avif"></td> </tr> </table> ## Edge Impulse: Data Annotation and Model Building <table> <tr> <td>Data Labeler </td> <td>Data Annotation</td> </tr> <tr> <td><img src="media_assets/annotating_image.png"></td> <td><img src="media_assets/image_in_queue.png"></td> </tr> </table> We uploaded the generated images to Edge Impulse Studio, where we annotated the dataset into different classes. We carefully annotated each dataset version and trained using the <strong>Yolov5</strong> object detection model. We tried a couple of input sizes ranging from 320, 512 and 1024 pixels before settling with <strong>320</strong>. Edge Impulse provided an excellent version control system for models, which enabled us to track model performance across different dataset versions and hyperparameters. <table> <tr> <td>Create Impulse</td> <td>Generate Feature </td> </tr> <tr> <td><img src="media_assets/building_model.png"></td> <td><img src="media_assets/feature_extraction.png"></td> </tr> </table> Version Control in Edge Impulse | --- | ![](media_assets/version_control.gif) | ### Testing of Object Detection Models with Real Objects We used the Edge Impulse CLI tool to evaluate the model's accuracy by downloading, building and running the model locally. A Logitech C920 webcam streamed the live video of objects on a table from 50 cm to 80 cm from the camera. The position of the camera remains fixed during the experiment. The clips below show that the trained model does not generalize well to real-world objects. Thus we needed to improve the model by uploading, annotating and training the model with the V2 dataset. V1 failure - model failed to identify objects | --- | ![](media_assets/v1_1.gif) | We observed improved model performance when trained with the V2 dataset. The model could identify various objects distinctly, although the model failed when we changed the objects' orientations. Thus, we trained the model with the remaining V3 dataset to mitigate these issues and increase other hyperparameters, such as epochs from 500 to 2000. We also tested the performance of our object detector on real objects with different background textures, and the model performed well in these conditions. V2 success - model can identify objects | --- | ![](media_assets/v2_1.gif) | V2 failure - model failed to identify objects in different orientations | --- | ![](media_assets/v2_2.gif) | After several cycles of iterating over various hyperparameters, we got a model that generalizes well across different orientations. V3 success - model can identify objects in different orientations | --- | ![](media_assets/v3_2.gif) | V3 success - model can identify different materials | --- | ![](media_assets/different_material.gif) | The core idea behind the data-centric approach to solving ML problems is to create more data around the failure points of the model. We improved the model by iteratively improving the data generation, especially in areas where the model had previously failed. ![](media_assets/variation_position.gif) ## Conclusion In this work, we learned how the domain randomization approach helps generate quality and well-generalized datasets for the object detection task. We also demonstrated the effectiveness of data-centric machine learning workflow in improving the model performance. Although this work is restricted to visual problems, we can extend domain randomization to other sensors such as lidar, accelerometer, and ultrasonic sensors. ## Reference - [Project on Edge Impulse](https://studio.edgeimpulse.com/public/187851/latest) - [Introduction to Replicator](https://docs.omniverse.nvidia.com/app_code/prod_extensions/ext_replicator.html) - [Introduction to USD](https://developer.nvidia.com/usd#usdnvidia) - [Telsa AI Day](https://youtu.be/j0z4FweCy4M?t=5727) - [Domain Randomization for Transferring Deep Neural Networks](https://arxiv.org/pdf/1703.06907.pdf) - [Understanding Domain Randomization for SIM-TO-REAL Transfer](https://arxiv.org/pdf/2110.03239.pdf)
16,016
Markdown
55.597173
695
0.763986
gigwegbe/synthetic_data_with_nvidia_replicator_and_edge_impulse/old_setting/README_old.md
### Synthetic data with Nvidia replicator and Edge Impulse ![alt workflow](asset/img/updated_cover.png) - Fixed position - Fixed Camera but not random - Fixed Lightning and light parameters - Changed background materials
228
Markdown
24.444442
60
0.767544
gigwegbe/synthetic_data_with_nvidia_replicator_and_edge_impulse/old_setting/objects_position_normal_90.py
import omni.replicator.core as rep with rep.new_layer(): # Load in asset local_path = "/home/george/Documents/synthetic_data_with_nvidia_replicator_and_edge_impulse/" TABLE_USD =f"{local_path}/asset/Collected_EastRural_Table/EastRural_Table.usd" SPOON_SMALL_USD = f"{local_path}/asset/Collected_Spoon_Small/Spoon_Small.usd" SPOON_BIG_USD = f"{local_path}/asset/Collected_Spoon_Big/Spoon_Big.usd" FORK_SMALL_USD = f"{local_path}/asset/Collected_Fork_Small/Fork_Small.usd" FORK_BIG_USD = f"{local_path}/asset/Collected_Fork_Big/Fork_Big.usd" KNIFE_USD = f"{local_path}/asset/Collected_Knife/Knife.usd" # Camera paramters cam_position = (-131,200,-134) cam_position2 = (-131,120,-134) cam_position_random = rep.distribution.uniform((0,181,0), (0, 300, 0)) cam_rotation = (-90,0,0) #(-45,0,0) focus_distance = 120 focus_distance2 = 72 focal_length = 19.1 focal_length2 = 7.5 f_stop = 1.8 f_stop2 = 1.8 focus_distance_random = rep.distribution.normal(500.0, 100) # Cultery path current_cultery = SPOON_SMALL_USD # Change the item here e.g KNIFE_USD output_path = current_cultery.split(".")[0].split("/")[-1] def rect_lights(num=2): lights = rep.create.light( light_type="rect", temperature=rep.distribution.normal(6500, 500), intensity=rep.distribution.normal(0, 5000), position=(-131,150,-134), rotation=(-90,0,0), scale=rep.distribution.uniform(50, 100), count=num ) return lights.node def dome_lights(num=1): lights = rep.create.light( light_type="dome", temperature=rep.distribution.normal(6500, 500), intensity=rep.distribution.normal(0, 1000), position=(0,0,0), rotation=(270,0,0), count=num ) return lights.node def table(): table = rep.create.from_usd(TABLE_USD, semantics=[('class', 'table')]) with table: rep.modify.pose( position=(-135.39745, 0, -140.25696), rotation=(0,-90,-90), ) return table # Define randomizer function for CULTERY assets. This randomization includes placement and rotation of the assets on the surface. def cutlery_props(size=15): instances = rep.randomizer.instantiate(rep.utils.get_usd_files(current_cultery), size=size, mode='point_instance') with instances: rep.modify.pose( position=rep.distribution.uniform((-212, 76.2, -187), (-62, 76.2, -94)), rotation=rep.distribution.uniform((-90,-180, 0), (-90, 180, 0)), ) return instances.node # Register randomization rep.randomizer.register(table) rep.randomizer.register(cutlery_props) rep.randomizer.register(rect_lights) rep.randomizer.register(dome_lights) # Multiple setup cameras and attach it to render products camera = rep.create.camera(focus_distance=focus_distance, focal_length=focal_length, position=cam_position, rotation=cam_rotation, f_stop=f_stop) camera2 = rep.create.camera(focus_distance=focus_distance2, focal_length=focal_length2, position=cam_position2, rotation=cam_rotation, f_stop=f_stop) # Will render 1024x1024 images and 512x512 images render_product = rep.create.render_product(camera, (1024, 1024)) render_product2 = rep.create.render_product(camera2, (512, 512)) # Initialize and attach writer writer = rep.WriterRegistry.get("BasicWriter") writer.initialize(output_dir=f"{local_path}/data/normal/{output_path}", rgb=True, bounding_box_2d_tight=False, semantic_segmentation=False) writer.attach([render_product, render_product2]) with rep.trigger.on_frame(num_frames=50): rep.randomizer.table() rep.randomizer.rect_lights(1) rep.randomizer.dome_lights(1) rep.randomizer.cutlery_props(15) # Run the simulation graph rep.orchestrator.run()
4,065
Python
38.096153
153
0.64182
mati-nvidia/window-menu-add/exts/maticodes.example.window.add/maticodes/example/window/add/extension.py
import carb import omni.ext import omni.kit.ui from .window import MyCustomWindow, WINDOW_TITLE class WindowMenuAddExtension(omni.ext.IExt): def on_startup(self, ext_id): carb.log_info("[maticodes.example.window.add] WindowMenuAddExtension startup") # Note the "Window" part of the path that directs the new menu item to the "Window" menu. self._menu_path = f"Window/{WINDOW_TITLE}" self._window = None self._menu = omni.kit.ui.get_editor_menu().add_item(self._menu_path, self._on_menu_click, True) def on_shutdown(self): carb.log_info("[maticodes.example.window.add] WindowMenuAddExtension shutdown") omni.kit.ui.get_editor_menu().remove_item(self._menu) if self._window is not None: self._window.destroy() self._window = None def _on_menu_click(self, menu, toggled): """Handles showing and hiding the window from the 'Windows' menu.""" if toggled: if self._window is None: self._window = MyCustomWindow(WINDOW_TITLE, self._menu_path) else: self._window.show() else: if self._window is not None: self._window.hide()
1,232
Python
34.22857
103
0.621753
mati-nvidia/window-menu-add/exts/maticodes.example.window.add/maticodes/example/window/add/window.py
import omni.kit.ui import omni.ui as ui WINDOW_TITLE = "My Custom Window" class MyCustomWindow(ui.Window): def __init__(self, title, menu_path): super().__init__(title, width=640, height=480) self._menu_path = menu_path self.set_visibility_changed_fn(self._on_visibility_changed) self._build_ui() def on_shutdown(self): self._win = None def show(self): self.visible = True self.focus() def hide(self): self.visible = False def _build_ui(self): with self.frame: with ui.VStack(): ui.Label("This is just an empty window", width=0, alignment=ui.Alignment.CENTER) def _on_visibility_changed(self, visible): omni.kit.ui.get_editor_menu().set_value(self._menu_path, visible)
809
Python
25.129031
96
0.606922
mati-nvidia/window-menu-add/exts/maticodes.example.window.add/docs/README.md
# Window Menu Add An example extension showing how to create a window and add it to the `Window` menu so that it can be shown and hidden using the menu item in the `Window` menu.
179
Markdown
43.999989
118
0.765363
mati-nvidia/developer-office-hours/RUNBOOK.md
1. Run make_ext.bat <YYYY-MM-DD> 1. Put script into the `scripts/` folder. 1. Add questions covered in the ext README.
118
Markdown
38.666654
43
0.728814
mati-nvidia/developer-office-hours/tools/scripts/csv2md.py
# SPDX-License-Identifier: Apache-2.0 import argparse import csv from pathlib import Path if __name__ == "__main__": parser = argparse.ArgumentParser(description="Convert DOH CSV to MD") parser.add_argument( "csvfile", help="The CSV file to convert" ) args = parser.parse_args() csvfile = Path(args.csvfile) mdfile = csvfile.with_suffix(".md") rows = [] with open(csvfile) as f: with open(mdfile, "w") as out: for row in csv.reader(f): if row[2] and not row[5]: out.write(f"1. [{row[1]}]({row[2]})\n") print("Success!")
654
Python
20.833333
73
0.54893
mati-nvidia/developer-office-hours/tools/scripts/make_ext.py
# SPDX-License-Identifier: Apache-2.0 import argparse import shutil import os from pathlib import Path SOURCE_PATH = Path(__file__).parent / "template" / "maticodes.doh_YYYY_MM_DD" def text_replace(filepath, tokens_map): with open(filepath, "r") as f: data = f.read() for token, fstring in tokens_map.items(): data = data.replace(token, fstring) with open(filepath, "w") as f: f.write(data) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Create folder link to Kit App installed from Omniverse Launcher") parser.add_argument( "date", help="The dates of the Office Hour in YYYY-MM-DD format." ) args = parser.parse_args() year, month, day = args.date.split("-") # copy files dest_path = Path(__file__).parent / "../.." / f"exts/maticodes.doh_{year}_{month}_{day}" shutil.copytree(SOURCE_PATH, dest_path) # rename folders template_ext_folder = dest_path / "maticodes" / "doh_YYYY_MM_DD" ext_folder = dest_path / "maticodes" / f"doh_{year}_{month}_{day}" os.rename(template_ext_folder, ext_folder) tokens_map = { "[DATE_HYPHEN]": f"{year}-{month}-{day}", "[DATE_UNDERSCORE]": f"{year}_{month}_{day}", "[DATE_PRETTY]": f"{month}/{day}/{year}", } # text replace extension.toml ext_toml = dest_path / "config" / "extension.toml" text_replace(ext_toml, tokens_map) # text replace README readme = dest_path / "docs" / "README.md" text_replace(readme, tokens_map) # text replace extension.py ext_py = ext_folder / "extension.py" text_replace(ext_py, tokens_map) print("Success!")
1,695
Python
28.241379
115
0.614159
mati-nvidia/developer-office-hours/tools/scripts/template/maticodes.doh_YYYY_MM_DD/maticodes/doh_YYYY_MM_DD/extension.py
# SPDX-License-Identifier: Apache-2.0 import carb import omni.ext import omni.ui as ui class MyWindow(ui.Window): def __init__(self, title: str = None, **kwargs): super().__init__(title, **kwargs) self.frame.set_build_fn(self._build_window) def _build_window(self): with ui.ScrollingFrame(): with ui.VStack(height=0): ui.Label("My Label") def clicked(): carb.log_info("Button Clicked!") ui.Button("Click Me", clicked_fn=clicked) class MyExtension(omni.ext.IExt): def on_startup(self, ext_id): carb.log_info("[maticodes.doh_[DATE_UNDERSCORE]] Dev Office Hours Extension ([DATE_HYPHEN]) startup") self._window = MyWindow("MyWindow", width=300, height=300) def on_shutdown(self): carb.log_info("[maticodes.doh_[DATE_UNDERSCORE]] Dev Office Hours Extension ([DATE_HYPHEN]) shutdown") if self._window: self._window.destroy() self._window = None
1,025
Python
29.17647
110
0.599024
mati-nvidia/developer-office-hours/tools/scripts/template/maticodes.doh_YYYY_MM_DD/scripts/my_script.py
# SPDX-License-Identifier: Apache-2.0
37
Python
36.999963
37
0.783784
mati-nvidia/developer-office-hours/tools/scripts/template/maticodes.doh_YYYY_MM_DD/docs/README.md
# Developer Office Hour - [DATE_PRETTY] This is the sample code from the Developer Office Hour held on [DATE_PRETTY], Mati answered some developer questions from the NVIDIA Omniverse forums regarding Kit, Omniverse Code, Python, and USD. ## Questions - How do I do something? ...
282
Markdown
34.374996
117
0.762411
mati-nvidia/developer-office-hours/exts/maticodes.doh_2023_01_06/scripts/query_script_components.py
# SPDX-License-Identifier: Apache-2.0 from pxr import Sdf import omni.usd stage = omni.usd.get_context().get_stage() prim = stage.GetPrimAtPath("/World/Cube") attr = prim.GetAttribute("omni:scripting:scripts") if attr.IsValid(): scripts = attr.Get() if scripts: for script in scripts: print(script)
327
Python
26.333331
50
0.685015
mati-nvidia/developer-office-hours/exts/maticodes.doh_2023_01_06/scripts/add_script_component.py
# SPDX-License-Identifier: Apache-2.0 import omni.kit.commands from pxr import Sdf import omni.usd omni.kit.commands.execute('ApplyScriptingAPICommand', paths=[Sdf.Path('/World/Cube')]) omni.kit.commands.execute('RefreshScriptingPropertyWindowCommand') stage = omni.usd.get_context().get_stage() prim = stage.GetPrimAtPath("/World/Cube") attr = prim.GetAttribute("omni:scripting:scripts") scripts = attr.Get() attr.Set([r"C:\Users\mcodesal\Downloads\new_script2.py"]) # attr.Set(["omniverse://localhost/Users/mcodesal/new_script2.py"]) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path('/World/Cube.omni:scripting:scripts'), value=Sdf.AssetPathArray(1, (Sdf.AssetPath('C:\\mcodesal\\Downloads\\new_script2.py'))), prev=None) attr = prim.GetAttribute("omni:scripting:scripts") scripts = list(attr.Get()) scripts.append(r"C:\mcodesal\Downloads\new_script.py") attr.Set(scripts)
899
Python
31.142856
89
0.757508
mati-nvidia/developer-office-hours/exts/maticodes.doh_2023_01_06/scripts/interact_script_components.py
# SPDX-License-Identifier: Apache-2.0 import carb.events import omni.kit.app MY_CUSTOM_EVENT = carb.events.type_from_string("omni.my.extension.MY_CUSTOM_EVENT") bus = omni.kit.app.get_app().get_message_bus_event_stream() bus.push(MY_CUSTOM_EVENT, payload={"prim_path": "/World/Cube", "x": 1})
295
Python
31.888885
83
0.728814
mati-nvidia/developer-office-hours/exts/maticodes.doh_2023_01_06/docs/README.md
# Developer Office Hour - 01/06/2023 This is the sample code from the Developer Office Hour held on 01/06/2023, Mati answered some developer questions from the NVIDIA Omniverse forums regarding Kit, Omniverse Code, Python, and USD. ## Questions - 3:47 - How do you add an extension via the Extension Manager? - 8:48 - How do you programmatically add a Python Script to a prim? (Python Scripting Component) - 23:45 - How do you check what Python scripts a prim has? (Python Scripting Component) - 27:00 - How can you have your extension interact with a Python Scripting Component?
583
Markdown
52.090904
114
0.768439
mati-nvidia/developer-office-hours/exts/maticodes.doh_2023_04_21/scripts/pass_arg_to_callback.py
# SPDX-License-Identifier: Apache-2.0 from functools import partial import omni.ui as ui def do_something(p1, p2): print(f"Hello {p1} {p2}") window = ui.Window("My Window", width=300, height=300) with window.frame: ui.Button("Click Me", clicked_fn=partial(do_something, "a", "b"))
290
Python
25.454543
69
0.696552
mati-nvidia/developer-office-hours/exts/maticodes.doh_2023_04_21/scripts/create_mdl_mtl.py
# SPDX-License-Identifier: Apache-2.0 import omni.kit.commands omni.kit.commands.execute('CreateAndBindMdlMaterialFromLibrary', mdl_name='OmniPBR.mdl', mtl_name='OmniPBR', mtl_created_list=None)
198
Python
27.428568
64
0.787879
mati-nvidia/developer-office-hours/exts/maticodes.doh_2023_04_21/scripts/lock_prim.py
# SPDX-License-Identifier: Apache-2.0 import omni.kit.commands from pxr import Sdf omni.kit.commands.execute('LockSpecs', spec_paths=['/Desk'], hierarchy=False)
164
Python
19.624998
38
0.756098
mati-nvidia/developer-office-hours/exts/maticodes.doh_2023_04_21/docs/README.md
# Developer Office Hour - 04/21/2023 This is the sample code from the Developer Office Hour held on 04/21/2023, Mati answered some developer questions from the NVIDIA Omniverse forums regarding Kit, Omniverse Code, Python, and USD. ## Questions - 2:02 - How do I change the label of an Action Graph UI button? - 17:29 - How do I style and Action Graph UI Button? - 30:36 - How do I pass extra parameters to a button's clicked_fn callback? - 40:00 - How do I programmatically Lock Selected for a prim? - 44:08 - How do I create an MDL material on a stage?
558
Markdown
49.818177
114
0.74552
mati-nvidia/developer-office-hours/exts/maticodes.doh_2023_04_14/scripts/toggle_fullscreen.py
# SPDX-License-Identifier: Apache-2.0 import omni.kit.actions.core action_registry = omni.kit.actions.core.get_action_registry() action = action_registry.get_action("omni.kit.ui.editor_menu_bridge", "action_editor_menu_bridge_window_fullscreen_mode") action.execute()
269
Python
37.571423
121
0.784387
mati-nvidia/developer-office-hours/exts/maticodes.doh_2023_04_14/scripts/move_prim_forward.py
# SPDX-License-Identifier: Apache-2.0 from pxr import Gf, UsdGeom, Usd import omni.usd stage = omni.usd.get_context().get_stage() prim = stage.GetPrimAtPath("/World/Camera") xform = UsdGeom.Xformable(prim) local_transformation: Gf.Matrix4d = xform.GetLocalTransformation() # Apply the local matrix to the start and end points of the camera's default forward vector (-Z) a: Gf.Vec4d = Gf.Vec4d(0,0,0,1) * local_transformation b: Gf.Vec4d = Gf.Vec4d(0,0,-1,1) * local_transformation # Get the vector between those two points to get the camera's current forward vector cam_fwd_vec = b-a # Convert to Vec3 and then normalize to get unit vector cam_fwd_unit_vec = Gf.Vec3d(cam_fwd_vec[:3]).GetNormalized() # Multiply the forward direction vector with how far forward you want to move forward_step = cam_fwd_unit_vec * 100 # Create a new matrix with the translation that you want to perform offset_mat = Gf.Matrix4d() offset_mat.SetTranslate(forward_step) # Apply the translation to the current local transform new_transform = local_transformation * offset_mat # Extract the new translation translate: Gf.Vec3d = new_transform.ExtractTranslation() # Update the attribute prim.GetAttribute("xformOp:translate").Set(translate)
1,220
Python
44.222221
96
0.769672