xiaohk commited on
Commit
965466d
·
1 Parent(s): 91021eb

Change pyarrow to pandas for dataset preview

Browse files
Files changed (1) hide show
  1. diffusiondb.py +11 -15
diffusiondb.py CHANGED
@@ -11,8 +11,6 @@ from os.path import join, basename
11
  from huggingface_hub import hf_hub_url
12
 
13
  import datasets
14
- import pyarrow as pa
15
- import pyarrow.parquet as pq
16
 
17
  # Find for instance the citation on arxiv or on the dataset repo/website
18
  _CITATION = """\
@@ -359,11 +357,12 @@ class DiffusionDB(datasets.GeneratorBasedBuilder):
359
  cur_id = int(re.sub(r"part-(\d+)\.json", r"\1", basename(path)))
360
  part_ids.append(cur_id)
361
 
362
- metadata_table = pq.read_table(
 
 
363
  metadata_path,
364
  filters=[("part_id", "in", part_ids)],
365
  )
366
- print(metadata_table.shape)
367
 
368
  # Iterate through all extracted zip folders for images
369
  for k in range(num_data_dirs):
@@ -376,11 +375,8 @@ class DiffusionDB(datasets.GeneratorBasedBuilder):
376
  img_params = json_data[img_name]
377
  img_path = join(cur_data_dir, img_name)
378
 
379
- # Query the meta data
380
- row_mask = pa.compute.equal(
381
- metadata_table.column("image_name"), img_name
382
- )
383
- query_result = metadata_table.filter(row_mask)
384
 
385
  # Yields examples as (key, example) tuples
386
  yield img_name, {
@@ -393,10 +389,10 @@ class DiffusionDB(datasets.GeneratorBasedBuilder):
393
  "step": int(img_params["st"]),
394
  "cfg": float(img_params["c"]),
395
  "sampler": img_params["sa"],
396
- "width": query_result["width"][0].as_py(),
397
- "height": query_result["height"][0].as_py(),
398
- "user_name": query_result["user_name"][0].as_py(),
399
- "timestamp": query_result["timestamp"][0].as_py(),
400
- "image_nsfw": query_result["image_nsfw"][0].as_py(),
401
- "prompt_nsfw": query_result["prompt_nsfw"][0].as_py(),
402
  }
 
11
  from huggingface_hub import hf_hub_url
12
 
13
  import datasets
 
 
14
 
15
  # Find for instance the citation on arxiv or on the dataset repo/website
16
  _CITATION = """\
 
357
  cur_id = int(re.sub(r"part-(\d+)\.json", r"\1", basename(path)))
358
  part_ids.append(cur_id)
359
 
360
+ # We have to use pandas here to make the dataset preview work (it
361
+ # uses streaming mode)
362
+ metadata_table = pd.read_parquet(
363
  metadata_path,
364
  filters=[("part_id", "in", part_ids)],
365
  )
 
366
 
367
  # Iterate through all extracted zip folders for images
368
  for k in range(num_data_dirs):
 
375
  img_params = json_data[img_name]
376
  img_path = join(cur_data_dir, img_name)
377
 
378
+ # Query the metadata
379
+ query_result = metadata_table.query(f'`image_name` == "{img_name}"')
 
 
 
380
 
381
  # Yields examples as (key, example) tuples
382
  yield img_name, {
 
389
  "step": int(img_params["st"]),
390
  "cfg": float(img_params["c"]),
391
  "sampler": img_params["sa"],
392
+ "width": query_result["width"].to_list()[0],
393
+ "height": query_result["height"].to_list()[0],
394
+ "user_name": query_result["user_name"].to_list()[0],
395
+ "timestamp": query_result["timestamp"].to_list()[0],
396
+ "image_nsfw": query_result["image_nsfw"].to_list()[0],
397
+ "prompt_nsfw": query_result["prompt_nsfw"].to_list()[0],
398
  }