File size: 8,143 Bytes
4f2df12
 
 
 
 
c5965fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f2df12
12867d2
 
 
c3a972e
12867d2
c3a972e
12867d2
c3a972e
12867d2
c3a972e
12867d2
c3a972e
 
 
 
 
 
 
 
 
 
 
12867d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3a972e
12867d2
 
d441254
c3a972e
 
 
12867d2
 
 
 
 
c3a972e
 
 
 
 
 
 
d441254
 
c3a972e
 
 
36f2842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f2df12
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
---
language:
- en
size_categories:
- 10M<n<100M
pretty_name: Project Resilience Emissions from Land-Use Change Dataset
tags:
- climate
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
dataset_info:
  features:
  - name: ELUC_diff
    dtype: float32
  - name: c3ann
    dtype: float32
  - name: c3ann_diff
    dtype: float32
  - name: c3nfx
    dtype: float32
  - name: c3nfx_diff
    dtype: float32
  - name: c3per
    dtype: float32
  - name: c3per_diff
    dtype: float32
  - name: c4ann
    dtype: float32
  - name: c4ann_diff
    dtype: float32
  - name: c4per
    dtype: float32
  - name: c4per_diff
    dtype: float32
  - name: cell_area_diff
    dtype: float32
  - name: pastr
    dtype: float32
  - name: pastr_diff
    dtype: float32
  - name: primf
    dtype: float32
  - name: primf_diff
    dtype: float32
  - name: primn
    dtype: float32
  - name: primn_diff
    dtype: float32
  - name: range
    dtype: float32
  - name: range_diff
    dtype: float32
  - name: secdf
    dtype: float32
  - name: secdf_diff
    dtype: float32
  - name: secdn
    dtype: float32
  - name: secdn_diff
    dtype: float32
  - name: urban
    dtype: float32
  - name: urban_diff
    dtype: float32
  - name: ELUC
    dtype: float32
  - name: cell_area
    dtype: float32
  - name: country
    dtype: float64
  - name: crop
    dtype: float32
  - name: crop_diff
    dtype: float32
  - name: country_name
    dtype: string
  - name: time
    dtype: int64
  - name: lat
    dtype: float64
  - name: lon
    dtype: float64
  splits:
  - name: train
    num_bytes: 6797746584
    num_examples: 41387985
  download_size: 3176214475
  dataset_size: 6797746584
---
# Project Resilience Emissions from Land-Use Change Dataset

### Project Resilience
To contribute to this project see [Project Resilience](https://www.itu.int/en/ITU-T/extcoop/ai-data-commons/Pages/project-resilience.aspx) ([Github Repo](https://github.com/Project-Resilience/mvp)).

The goal of Project Resilience is "to build a public AI utility where a global community of innovators and thought leaders can enhance and utilize a collection of data and AI approaches to help with better preparedness, intervention, and response to environmental, health, information, or economic threats to our communities, and contribute the general efforts towards meeting the Sustainable Development Goals (SDGs)."

This dataset was used in the paper: [Discovering Effective Policies for Land-Use Planning](https://nn.cs.utexas.edu/?miikkulainen:arxiv23) at the [NeurIPS 2023 Workshop: Tackling Climate Change with Machine Learning](https://www.climatechange.ai/events/neurips2023). A recorded presentation on the paper can be found [here](https://www.climatechange.ai/papers/neurips2023/94).

A preliminary demo utilizing this dataset was presented at the United Nations AI For Good Summit 2023 in Geneva, Switzerland on the [main stage](https://aiforgood.itu.int/event/project-resilience-facilitating-collaborative-ai-solutions-to-global-problems/) as well as in a [workshop](https://aiforgood.itu.int/event/building-a-decision-augmentation-platform-to-address-global-issues-2/)

### Sources
This dataset contains estimates for CO2 Emissions from Land-Use Change (ELUC) provided by the [Bookkeeping of Land-Use Emissions (BLUE) model](https://doi.org/10.1002/2014GB004997). 
BLUE contributes ELUC estimates to the annually updated Global Carbon Budget (eg. to [Global Carbon Budget 2023](https://doi.org/10.5194/essd-15-5301-2023))

Note: this dataset contains committed land-use change emissions from BLUE, which is different than the ELUC data used in the Global Carbon Budget. Details are found below.

BLUE uses land-use change data from the [Land-Use Harmonization Project 2 (LUH2)](https://doi.org/10.5194/gmd-13-5425-2020), which provides gridded data on land-use changes from 850-2100.

Please contact [Clemens Schwingshackl](https://www.geographie.uni-muenchen.de/department/fiona/personen/index.php?personen_details=1&user_id=372) or [Julia Pongratz](https://www.geographie.uni-muenchen.de/department/fiona/personen/index.php?personen_details=1&user_id=307) from Ludwig-Maximilians-Universität Munich, Germany with any questions about the ELUC data from BLUE.

### Land-Use Types in LUH2

- Primary: Vegetation that is untouched by humans

    - primf: Primary forest
    - primn: Primary nonforest vegetation

    
- Secondary: Vegetation that has been touched by humans

    - secdf: Secondary forest
    - secdn: Secondary nonforest vegetation

- Urban

- Crop

    - c3ann: Annual C3 crops (e.g. wheat)
    - c4ann: Annual C4 crops (e.g. maize)
    - c3per: Perennial C3 crops (e.g. banana)
    - c4per: Perennial C4 crops (e.g. sugarcane)
    - c3nfx: Nitrogen fixing C3 crops (e.g. soybean)

- Pasture

    - pastr: Managed pasture land
    - range: Grazed natural grassland, savannah, etc.

### Dataset

The processed dataset is indexed by latitude, longitude, and time, with each row consisting of the land use of a given year, the land-use change from year to year+1, and the committed ELUC at the end of year in tons of carbon per hectare (tC/ha).

Committed ELUC means that the CO2 fluxes in the year of the land-use change event and all subsequent CO2 fluxes (e.g. due to decay of biomass after clearing or due to regrowth of forest after wood harvest or re/afforestation) are summed and attributed to the year of the event.

In addition, the cell area of the cell in hectares and the name of the country the cell is located in are provided.

A crop and crop_diff column consisting of the sums of all the crop types and crop type diffs is provided as well as the BLUE model treats all crop types the same.

The processed dataset was created by:
  - Joining the 2 raw data files by index
  - Shifting all diff columns back 1 year so they align with their corresponding ELUC
  - Aggregating the crop columns into a single column
  - Adding country names to each cell

#### Raw
Raw data files are provided as: `merged_aggregated_dataset_1850_2022.zarr.zip` and `BLUE_LUH2-GCB2022_ELUC-committed_gridded_net_1850-2021.nc`, which are the land-use changes and the committed emissions respectively.

The file `BLUE_LUH2-GCB2022_ELUC-committed_gridded_net_1850-2021.nc` contains committed emissions from BLUE (variable ELUC). It is indexed by latitude, longitude, and time with a spatial resolution of 0.25°, covering the years 1850-2021.
The file also contains the cell area of the cell in hectares (variable cell_area) and the name of the country the cell is located in are provided.

---
dataset_info:
  features:
  - name: ELUC_diff
    dtype: float32
  - name: c3ann
    dtype: float32
  - name: c3ann_diff
    dtype: float32
  - name: c3nfx
    dtype: float32
  - name: c3nfx_diff
    dtype: float32
  - name: c3per
    dtype: float32
  - name: c3per_diff
    dtype: float32
  - name: c4ann
    dtype: float32
  - name: c4ann_diff
    dtype: float32
  - name: c4per
    dtype: float32
  - name: c4per_diff
    dtype: float32
  - name: cell_area_diff
    dtype: float32
  - name: pastr
    dtype: float32
  - name: pastr_diff
    dtype: float32
  - name: primf
    dtype: float32
  - name: primf_diff
    dtype: float32
  - name: primn
    dtype: float32
  - name: primn_diff
    dtype: float32
  - name: range
    dtype: float32
  - name: range_diff
    dtype: float32
  - name: secdf
    dtype: float32
  - name: secdf_diff
    dtype: float32
  - name: secdn
    dtype: float32
  - name: secdn_diff
    dtype: float32
  - name: urban
    dtype: float32
  - name: urban_diff
    dtype: float32
  - name: ELUC
    dtype: float32
  - name: cell_area
    dtype: float32
  - name: country
    dtype: float64
  - name: crop
    dtype: float32
  - name: crop_diff
    dtype: float32
  - name: country_name
    dtype: string
  - name: time
    dtype: int64
  - name: lat
    dtype: float64
  - name: lon
    dtype: float64
  splits:
  - name: train
    num_bytes: 6837499488
    num_examples: 41630020
  download_size: 3195082319
  dataset_size: 6837499488
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---