File size: 1,188 Bytes
a12021a 11871f4 a12021a 11871f4 a12021a 11871f4 a12021a 11871f4 a12021a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
# pretty_name: "" # Example: "MS MARCO Terrier Index"
tags:
- pyterrier
- pyterrier-artifact
- pyterrier-artifact.dense_index
- pyterrier-artifact.dense_index.flex
task_categories:
- text-retrieval
viewer: false
---
# fever.retromae.flex
## Description
RetroMAE index for Fever
## Usage
```python
# Load the artifact
import pyterrier_alpha as pta
artifact = pta.Artifact.from_hf('pyterrier/fever.retromae.flex')
artifact.np_retriever()
```
## Benchmarks
`fever/dev`
| name | nDCG@10 | R@1000 |
|:----------|----------:|---------:|
| np (flat) | 0.719 | 0.9578 |
`fever/test`
| name | nDCG@10 | R@1000 |
|:----------|----------:|---------:|
| np (flat) | 0.688 | 0.9615 |
## Reproduction
```python
import pyterrier as pt
from tqdm import tqdm
import ir_datasets
from pyterrier_dr import FlexIndex, RetroMAE
pipeline = RetroMAE.msmarco_distill() >> FlexIndex("fever.retromae.flex")
dataset = ir_datasets.load('beir/fever')
docs = ({'docno': d.doc_id, 'text': d.default_text()} for d in tqdm(dataset.docs))
pipeline.index(docs)
```
## Metadata
```
{
"type": "dense_index",
"format": "flex",
"vec_size": 768,
"doc_count": 5416568
}
```
|