File size: 1,210 Bytes
d3e135e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec376e2
d3e135e
 
 
 
 
 
 
ec376e2
d3e135e
 
 
 
ec376e2
 
 
 
 
 
 
 
 
 
 
d3e135e
 
 
 
ec376e2
 
 
 
 
 
 
 
d3e135e
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
# pretty_name: "" # Example: "MS MARCO Terrier Index"
tags:
- pyterrier
- pyterrier-artifact
- pyterrier-artifact.dense_index
- pyterrier-artifact.dense_index.flex
task_categories:
- text-retrieval
viewer: false
---

# hotpotqa.retromae.flex

## Description

RetroMAE index for Hotpot QA

## Usage

```python
# Load the artifact
import pyterrier_alpha as pta
artifact = pta.Artifact.from_hf('pyterrier/hotpotqa.retromae.flex')
artifact.np_retriever()
```

## Benchmarks

`hotpotqa/dev`

| name      |   nDCG@10 |   R@1000 |
|:----------|----------:|---------:|
| np (flat) |    0.6019 |   0.8156 |

`hotpotqa/test`

| name      |   nDCG@10 |   R@1000 |
|:----------|----------:|---------:|
| np (flat) |    0.5866 |    0.819 |

## Reproduction

```python
import pyterrier as pt
from tqdm import tqdm
import ir_datasets
from pyterrier_dr import FlexIndex, RetroMAE
pipeline = RetroMAE.msmarco_distill() >> FlexIndex("hotpotqa.retromae.flex")
dataset = ir_datasets.load('beir/hotpotqa')
docs = ({'docno': d.doc_id, 'text': d.default_text()} for d in tqdm(dataset.docs))
pipeline.index(docs)
```

## Metadata

```
{
  "type": "dense_index",
  "format": "flex",
  "vec_size": 768,
  "doc_count": 5233329
}
```