|
|
|
|
|
|
|
"""ELRC-Medical-V2 : European parallel corpus for healthcare machine translation""" |
|
|
|
import os |
|
import csv |
|
import datasets |
|
from tqdm import tqdm |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_CITATION = """ |
|
@inproceedings{losch-etal-2018-european, |
|
title = "European Language Resource Coordination: Collecting Language Resources for Public Sector Multilingual Information Management", |
|
author = {L{\"o}sch, Andrea and |
|
Mapelli, Val{\'e}rie and |
|
Piperidis, Stelios and |
|
Vasi{\c{l}}jevs, Andrejs and |
|
Smal, Lilli and |
|
Declerck, Thierry and |
|
Schnur, Eileen and |
|
Choukri, Khalid and |
|
van Genabith, Josef}, |
|
booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)", |
|
month = may, |
|
year = "2018", |
|
address = "Miyazaki, Japan", |
|
publisher = "European Language Resources Association (ELRA)", |
|
url = "https://aclanthology.org/L18-1213", |
|
} |
|
""" |
|
|
|
_LANGUAGE_PAIRS = ["en-" + lang for lang in ["bg", "cs", "da", "de", "el", "es", "et", "fi", "fr", "ga", "hr", "hu", "it", "lt", "lv", "mt", "nl", "pl", "pt", "ro", "sk", "sl", "sv"]] |
|
|
|
_LICENSE = """ |
|
This work is licensed under a <a rel="license" href="https://elrc-share.eu/static/metashare/licences/CC-BY-4.0.pdf">Attribution 4.0 International (CC BY 4.0) License</a>. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
_URL = "https://huggingface.co/datasets/qanastek/ELRC-Medical-V2/resolve/main/ELRC-Medical-V2.zip" |
|
|
|
|
|
_DESCRIPTION = "No description" |
|
|
|
class ELRC_Medical_V2(datasets.GeneratorBasedBuilder): |
|
"""ELRC-Medical-V2 dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name=name, version=datasets.Version("2.0.0"), description="The ELRC-Medical-V2 corpora") for name in _LANGUAGE_PAIRS |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "en-fr" |
|
|
|
def _info(self): |
|
src, target = self.config.name.split("-") |
|
pair = (src, target) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{"translation": datasets.features.Translation(languages=pair)} |
|
), |
|
supervised_keys=(src, target), |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
homepage="https://github.com/qanastek/ELRC-Medical-V2/", |
|
citation=_CITATION, |
|
license=_LICENSE, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
|
|
data_dir = dl_manager.download_and_extract(_URL) |
|
|
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir + "/" + self.config.name + ".csv", |
|
"split": "train", |
|
} |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
|
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
|
|
key_ = 0 |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
|
|
for id_, row in enumerate(csv.reader(f, delimiter=',')): |
|
|
|
if id_ == 0: |
|
continue |
|
|
|
|
|
src, target = str(row[1]).split("-") |
|
|
|
yield key_, { |
|
"translation": { |
|
src: str(row[2]).strip(), |
|
target: str(row[3]).strip(), |
|
}, |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
key_ += 1 |
|
|