senaK-quasara commited on
Commit
52655e5
·
verified ·
1 Parent(s): da5c84e

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +108 -0
README.md ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ task_categories:
3
+ - zero-shot-classification
4
+ language:
5
+ - en
6
+ ---
7
+ # Dataset Card for Dataset Name
8
+
9
+ <!-- Provide a quick summary of the dataset. -->
10
+
11
+ We downloaded satellite images from Major-TOM, filtered for Germany, and processed them into vector embeddings.
12
+
13
+ ## Datasource Details
14
+ | | Value |
15
+ |---------------|-----------------------------------------|
16
+ | Datasource | Major-TOM/Core-S2L2A |
17
+ | Region | box(5.98865807458, 47.3024876979, 15.0169958839, 54.983104153) (Covers whole of Germany) |
18
+ | Date Range | ('2020-01-01', '2025-01-01') |
19
+ | Cloud Cover | (0, 10) |
20
+ | No Data | (0.0, 0.0) |
21
+
22
+ Organisation: https://huggingface.co/Major-TOM
23
+
24
+ Base Dataset: https://huggingface.co/datasets/Major-TOM/Core-S2L2A
25
+
26
+
27
+ <!-- Provide a longer summary of what this dataset is. -->
28
+ **Metadata.parquet File**
29
+
30
+ This dataset shows the relationship between our embeddings/vectors and Major TOM images for fast linking to other Major TOM datasets.
31
+
32
+ **Embedding.dat**
33
+
34
+ This dataset has the vector embeddings calculated by us.
35
+
36
+ What we did was:
37
+
38
+ a) to vectorise the entire Major-TOM image data for Europe;
39
+
40
+ b) used the OPENCLIP_SIGLIP_400M on the Quasara Platform for embedding generation
41
+
42
+ c) no pre-training, no labelling happened in the preparation of this dataset
43
+
44
+ ## Uses
45
+
46
+ <!-- Address questions around how the dataset is intended to be used. -->
47
+
48
+ # MajorTOM-Europe Dataset
49
+
50
+ The **MajorTOM-Europe dataset** provides embeddings derived from high-resolution satellite images of the Europe region, generated using the OpenCLIP SigLIP model. These embeddings, extracted from images covering a range of geographic coordinates across Germany, provide a powerful tool for various applications.
51
+
52
+ ## Dataset Information
53
+
54
+ - **Coordinates Info:** The embeddings cover a range of geographic coordinates across the Europe region.
55
+ - **Related Dataset:** The MajorTOM-Europe dataset is closely related to the original **S2L2A** dataset.
56
+
57
+ ## Features
58
+
59
+ The MajorTOM-Europe dataset leverages CLIP's ability to relate textual descriptions to visual data, enabling more intuitive searches and analysis. This allows users to search among images using text-based queries effectively.
60
+
61
+ ## Applications
62
+
63
+ The MajorTOM-Europe dataset can be utilized for various applications, including:
64
+
65
+ - **Monitoring Changes in Land Use and Land Cover:**
66
+ - Track deforestation
67
+ - Observe urban expansion
68
+ - Monitor water body dynamics
69
+
70
+ - **Precision Agriculture:**
71
+ - Analyze crop health
72
+ - Predict yields
73
+ - Plan harvests
74
+
75
+ - **Climate Research:**
76
+ - Study climate patterns
77
+ - Monitor changes and impacts on regional and local levels
78
+
79
+
80
+ <!--direct use have to think still with de code snippet -->
81
+
82
+
83
+
84
+ ## Dataset Structure
85
+
86
+ <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
87
+
88
+ **Metadata.parquet**
89
+ | Column | Explanation |
90
+ |----------------|-----------------------------------------------------------------------------------------------|
91
+ | grid_cell | Coordinates in the Major TOM grid, enabling fast linking to other Major TOM datasets. |
92
+ | grid_row_u | Row identifier in the Major TOM grid for linking purposes. |
93
+ | grid_row_r | Another row identifier in the Major TOM grid for linking purposes. |
94
+ | centre_lat | Latitude of the center of the image portion for which embedding has been computed. |
95
+ | centre_lon | Longitude of the center of the image portion for which embedding has been computed. |
96
+ | timestamp | Date and time of the original product in the %Y%m%dT%H%M%S format. |
97
+ | dat_row | Row number in the .dat file associated with the data entry. |
98
+ | unique_id | Unique identifier combining grid_cell, timestamp, and possibly other parameters (e.g., parquet).|
99
+ | image_type | Each image is split into 70 segments and vectorized. |
100
+ | coordinates | Coordinates in the image that define the segment that was vectorized. Full images have no coordinates. |
101
+ | embedding_file | Corresponding file that stores the embedding vector. |
102
+
103
+ **Embedding.dat**
104
+
105
+ | Column | Explanation |
106
+ |---------------|-----------------------------------------------------------------------------------------------------|
107
+ | embeddings | Vectors calculated from the image/image segment. |
108
+