File size: 21,326 Bytes
dc50279
 
 
 
 
 
 
 
 
 
657aafe
 
 
 
 
aea1f1f
 
944ee5f
 
5e438fc
 
cd0efed
 
e3d65f2
 
2e33f66
 
b14157c
 
67b44d3
 
a3f3d45
 
0129f3f
 
51ad6c2
 
fbca0aa
 
0cad4ee
 
3578147
 
0d05a17
 
90281ad
 
dbf8860
 
58271bf
 
06861db
 
fb392bd
 
b3963e5
 
a087d1b
 
a98501f
 
56cd726
 
3dc8708
 
489a0db
 
6a19f85
 
375e489
 
969be92
 
59a1b04
 
0caf8e6
 
051884c
 
e0b67e7
 
80a6e90
 
fca8758
 
62c495b
 
9f057bf
 
cb37d9c
 
67cd585
 
cf77594
 
d665a39
 
a091e9b
 
88d909c
 
cabfbcd
 
7f93f3d
 
9673125
 
ff6245d
 
2b15f05
 
79d00d2
 
00619de
 
7e50302
 
60381ac
 
80072a7
 
262d821
 
9a9ecee
 
fa3a390
 
d4f1cf2
 
de53254
 
d871bf5
 
21276fa
 
d353039
 
75f9213
 
e3b307e
 
0ee99ff
 
d5c6228
 
1a2a3db
 
287b1b0
 
e2105cb
 
4b32500
 
f7cea0d
 
092c36e
 
76d7819
 
55913b1
 
13f318e
 
50c0b4f
 
5ec64ba
 
4b5909e
 
4f489de
 
c58f456
 
51982c9
 
94eb40a
 
657aafe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aea1f1f
 
 
944ee5f
 
 
5e438fc
 
 
cd0efed
 
 
e3d65f2
 
 
2e33f66
 
 
b14157c
 
 
67b44d3
 
 
a3f3d45
 
 
0129f3f
 
 
51ad6c2
 
 
fbca0aa
 
 
0cad4ee
 
 
3578147
 
 
0d05a17
 
 
90281ad
 
 
dbf8860
 
 
58271bf
 
 
06861db
 
 
fb392bd
 
 
b3963e5
 
 
a087d1b
 
 
a98501f
 
 
56cd726
 
 
3dc8708
 
 
489a0db
 
 
6a19f85
 
 
375e489
 
 
969be92
 
 
59a1b04
 
 
0caf8e6
 
 
051884c
 
 
e0b67e7
 
 
80a6e90
 
 
fca8758
 
 
62c495b
 
 
9f057bf
 
 
cb37d9c
 
 
67cd585
 
 
cf77594
 
 
d665a39
 
 
a091e9b
 
 
88d909c
 
 
cabfbcd
 
 
7f93f3d
 
 
9673125
 
 
ff6245d
 
 
2b15f05
 
 
79d00d2
 
 
00619de
 
 
7e50302
 
 
60381ac
 
 
80072a7
 
 
262d821
 
 
9a9ecee
 
 
fa3a390
 
 
d4f1cf2
 
 
de53254
 
 
d871bf5
 
 
21276fa
 
 
d353039
 
 
75f9213
 
 
e3b307e
 
 
0ee99ff
 
 
d5c6228
 
 
1a2a3db
 
 
287b1b0
 
 
e2105cb
 
 
4b32500
 
 
f7cea0d
 
 
092c36e
 
 
76d7819
 
 
55913b1
 
 
13f318e
 
 
50c0b4f
 
 
5ec64ba
 
 
4b5909e
 
 
4f489de
 
 
c58f456
 
 
51982c9
 
 
94eb40a
 
 
 
 
a7d73e0
 
 
 
77c4503
a7d73e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f301ac
 
 
a7d73e0
 
 
e188723
42b3dcc
77c4503
 
a59b3b2
74f16c3
77c4503
 
0bb5805
 
a7d73e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
---
license: apache-2.0
task_categories:
- automatic-speech-recognition
- text-to-speech
language:
- en
pretty_name: Technical Indian English
size_categories:
- 1K<n<10K
configs:
- config_name: default
  data_files:
  - split: train_0
    path: data/train_0-*
  - split: train_1
    path: data/train_1-*
  - split: train_2
    path: data/train_2-*
  - split: train_3
    path: data/train_3-*
  - split: train_4
    path: data/train_4-*
  - split: train_5
    path: data/train_5-*
  - split: train_6
    path: data/train_6-*
  - split: train_7
    path: data/train_7-*
  - split: train_8
    path: data/train_8-*
  - split: train_9
    path: data/train_9-*
  - split: train_10
    path: data/train_10-*
  - split: train_11
    path: data/train_11-*
  - split: train_12
    path: data/train_12-*
  - split: train_13
    path: data/train_13-*
  - split: train_14
    path: data/train_14-*
  - split: train_15
    path: data/train_15-*
  - split: train_16
    path: data/train_16-*
  - split: train_17
    path: data/train_17-*
  - split: train_18
    path: data/train_18-*
  - split: train_19
    path: data/train_19-*
  - split: train_20
    path: data/train_20-*
  - split: train_21
    path: data/train_21-*
  - split: train_22
    path: data/train_22-*
  - split: train_23
    path: data/train_23-*
  - split: train_24
    path: data/train_24-*
  - split: train_25
    path: data/train_25-*
  - split: train_26
    path: data/train_26-*
  - split: train_27
    path: data/train_27-*
  - split: train_28
    path: data/train_28-*
  - split: train_29
    path: data/train_29-*
  - split: train_30
    path: data/train_30-*
  - split: train_31
    path: data/train_31-*
  - split: train_32
    path: data/train_32-*
  - split: train_33
    path: data/train_33-*
  - split: train_34
    path: data/train_34-*
  - split: train_35
    path: data/train_35-*
  - split: train_36
    path: data/train_36-*
  - split: train_37
    path: data/train_37-*
  - split: train_38
    path: data/train_38-*
  - split: train_39
    path: data/train_39-*
  - split: train_40
    path: data/train_40-*
  - split: train_41
    path: data/train_41-*
  - split: train_42
    path: data/train_42-*
  - split: train_43
    path: data/train_43-*
  - split: train_44
    path: data/train_44-*
  - split: train_45
    path: data/train_45-*
  - split: train_46
    path: data/train_46-*
  - split: train_47
    path: data/train_47-*
  - split: train_48
    path: data/train_48-*
  - split: train_49
    path: data/train_49-*
  - split: train_50
    path: data/train_50-*
  - split: train_51
    path: data/train_51-*
  - split: train_52
    path: data/train_52-*
  - split: train_53
    path: data/train_53-*
  - split: train_54
    path: data/train_54-*
  - split: train_55
    path: data/train_55-*
  - split: train_56
    path: data/train_56-*
  - split: train_57
    path: data/train_57-*
  - split: train_58
    path: data/train_58-*
  - split: train_59
    path: data/train_59-*
  - split: train_60
    path: data/train_60-*
  - split: train_61
    path: data/train_61-*
  - split: train_62
    path: data/train_62-*
  - split: train_63
    path: data/train_63-*
  - split: train_64
    path: data/train_64-*
  - split: train_65
    path: data/train_65-*
  - split: train_66
    path: data/train_66-*
  - split: train_67
    path: data/train_67-*
  - split: train_68
    path: data/train_68-*
  - split: train_69
    path: data/train_69-*
  - split: train_70
    path: data/train_70-*
  - split: train_71
    path: data/train_71-*
  - split: train_72
    path: data/train_72-*
  - split: train_73
    path: data/train_73-*
  - split: train_74
    path: data/train_74-*
  - split: train_75
    path: data/train_75-*
  - split: train_76
    path: data/train_76-*
  - split: train_77
    path: data/train_77-*
  - split: train_78
    path: data/train_78-*
  - split: test_0
    path: data/test_0-*
  - split: test_1
    path: data/test_1-*
  - split: test_2
    path: data/test_2-*
dataset_info:
  features:
  - name: audio
    struct:
    - name: array
      sequence:
        sequence: float32
    - name: path
      dtype: string
    - name: sampling_rate
      dtype: int64
  - name: split
    dtype: string
  - name: ID
    dtype: string
  - name: Transcript
    dtype: string
  - name: Normalised_Transcript
    dtype: string
  - name: Speech_Duration_seconds
    dtype: float64
  - name: Speaker_ID
    dtype: int64
  - name: Gender
    dtype: string
  - name: Caste
    dtype: string
  - name: Year_Class
    dtype: string
  - name: Speech_Class
    dtype: string
  - name: Discipline_Group
    dtype: string
  - name: Native_Region
    dtype: string
  - name: Topic
    dtype: string
  splits:
  - name: train_0
    num_bytes: 159596908
    num_examples: 100
  - name: train_1
    num_bytes: 154466417
    num_examples: 100
  - name: train_2
    num_bytes: 164830755
    num_examples: 100
  - name: train_3
    num_bytes: 163846670
    num_examples: 100
  - name: train_4
    num_bytes: 158878351
    num_examples: 100
  - name: train_5
    num_bytes: 161562786
    num_examples: 100
  - name: train_6
    num_bytes: 168529715
    num_examples: 100
  - name: train_7
    num_bytes: 163769246
    num_examples: 100
  - name: train_8
    num_bytes: 152866617
    num_examples: 100
  - name: train_9
    num_bytes: 171234967
    num_examples: 100
  - name: train_10
    num_bytes: 155676874
    num_examples: 100
  - name: train_11
    num_bytes: 166546675
    num_examples: 100
  - name: train_12
    num_bytes: 154204346
    num_examples: 100
  - name: train_13
    num_bytes: 161604831
    num_examples: 100
  - name: train_14
    num_bytes: 163285492
    num_examples: 100
  - name: train_15
    num_bytes: 156010091
    num_examples: 100
  - name: train_16
    num_bytes: 155817421
    num_examples: 100
  - name: train_17
    num_bytes: 165098083
    num_examples: 100
  - name: train_18
    num_bytes: 170197491
    num_examples: 100
  - name: train_19
    num_bytes: 155464475
    num_examples: 100
  - name: train_20
    num_bytes: 155351724
    num_examples: 100
  - name: train_21
    num_bytes: 159715260
    num_examples: 100
  - name: train_22
    num_bytes: 158236240
    num_examples: 100
  - name: train_23
    num_bytes: 159682266
    num_examples: 100
  - name: train_24
    num_bytes: 166115920
    num_examples: 100
  - name: train_25
    num_bytes: 157975696
    num_examples: 100
  - name: train_26
    num_bytes: 163387926
    num_examples: 100
  - name: train_27
    num_bytes: 156164315
    num_examples: 100
  - name: train_28
    num_bytes: 163665051
    num_examples: 100
  - name: train_29
    num_bytes: 161448207
    num_examples: 100
  - name: train_30
    num_bytes: 152968507
    num_examples: 100
  - name: train_31
    num_bytes: 158547084
    num_examples: 100
  - name: train_32
    num_bytes: 159756851
    num_examples: 100
  - name: train_33
    num_bytes: 162052446
    num_examples: 100
  - name: train_34
    num_bytes: 169312452
    num_examples: 100
  - name: train_35
    num_bytes: 170415545
    num_examples: 100
  - name: train_36
    num_bytes: 159185426
    num_examples: 100
  - name: train_37
    num_bytes: 155372992
    num_examples: 100
  - name: train_38
    num_bytes: 156961021
    num_examples: 100
  - name: train_39
    num_bytes: 155754650
    num_examples: 100
  - name: train_40
    num_bytes: 164206647
    num_examples: 100
  - name: train_41
    num_bytes: 153346275
    num_examples: 100
  - name: train_42
    num_bytes: 152080502
    num_examples: 100
  - name: train_43
    num_bytes: 158419068
    num_examples: 100
  - name: train_44
    num_bytes: 158057125
    num_examples: 100
  - name: train_45
    num_bytes: 165164816
    num_examples: 100
  - name: train_46
    num_bytes: 157659132
    num_examples: 100
  - name: train_47
    num_bytes: 158897047
    num_examples: 100
  - name: train_48
    num_bytes: 168559462
    num_examples: 100
  - name: train_49
    num_bytes: 167699018
    num_examples: 100
  - name: train_50
    num_bytes: 159117923
    num_examples: 100
  - name: train_51
    num_bytes: 157182317
    num_examples: 100
  - name: train_52
    num_bytes: 159672528
    num_examples: 100
  - name: train_53
    num_bytes: 152821680
    num_examples: 100
  - name: train_54
    num_bytes: 164752542
    num_examples: 100
  - name: train_55
    num_bytes: 165649574
    num_examples: 100
  - name: train_56
    num_bytes: 164706387
    num_examples: 100
  - name: train_57
    num_bytes: 154830453
    num_examples: 100
  - name: train_58
    num_bytes: 161133030
    num_examples: 100
  - name: train_59
    num_bytes: 154735208
    num_examples: 100
  - name: train_60
    num_bytes: 164090726
    num_examples: 100
  - name: train_61
    num_bytes: 156685845
    num_examples: 100
  - name: train_62
    num_bytes: 159936561
    num_examples: 100
  - name: train_63
    num_bytes: 160654183
    num_examples: 100
  - name: train_64
    num_bytes: 161032032
    num_examples: 100
  - name: train_65
    num_bytes: 155268183
    num_examples: 100
  - name: train_66
    num_bytes: 164158067
    num_examples: 100
  - name: train_67
    num_bytes: 168308047
    num_examples: 100
  - name: train_68
    num_bytes: 168014390
    num_examples: 100
  - name: train_69
    num_bytes: 161971102
    num_examples: 100
  - name: train_70
    num_bytes: 156137089
    num_examples: 100
  - name: train_71
    num_bytes: 148956376
    num_examples: 100
  - name: train_72
    num_bytes: 155518828
    num_examples: 100
  - name: train_73
    num_bytes: 166295901
    num_examples: 100
  - name: train_74
    num_bytes: 151141940
    num_examples: 100
  - name: train_75
    num_bytes: 158780014
    num_examples: 100
  - name: train_76
    num_bytes: 158061024
    num_examples: 100
  - name: train_77
    num_bytes: 155858659
    num_examples: 100
  - name: train_78
    num_bytes: 131617110
    num_examples: 84
  - name: test_0
    num_bytes: 152436572
    num_examples: 100
  - name: test_1
    num_bytes: 161351141
    num_examples: 100
  - name: test_2
    num_bytes: 160833508
    num_examples: 100
  download_size: 13129976681
  dataset_size: 13101355822
---



# Dataset Card for TIE_Shorts

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description
- **Repository:** https://github.com/raianand1991/TIE
- **Paper:** https://arxiv.org/abs/2307.10587
- **Point of Contact:** [[email protected]](mailto:[email protected])

### Dataset Summary

TIE_shorts is a derived version of the [Technical Indian English (TIE)](https://github.com/raianand1991/TIE) dataset, a large-scale speech dataset (~ 8K hours) originally consisting of approximately 750 GB of content 
sourced from the [NPTEL](https://nptel.ac.in/) platform. The original TIE dataset contains around 9.8K technical lectures in English delivered by instructors from various regions across India, 
with each lecture averaging about 50 minutes. These lectures cover a wide range of technical subjects and capture diverse linguistic features characteristic of Indian 
English.

The TIE_shorts version (~ 70 hours audio and 600K ground-truth tokens) was created to facilitate efficient training and usage in speech processing tasks by providing shorter audio samples. In TIE_shorts, 
consecutive audio snippets from the original dataset were merged based on timestamps, with a condition that the final merged audio should not exceed 30 seconds in duration.
This process results in 25–30 second audio clips, each accompanied by a corresponding ground-truth transcript. This approach retains the linguistic diversity of the original 
dataset while significantly reducing the size and complexity, making TIE_shorts ideal for Automatic Speech Recognition (ASR) and other speech-to-text applications. 
As the dataset consisting of approximately 9.8K files spoken by 331 speakers from diverse demographics across the Indian population, this data is also well-suited for speaker identification and text-to-speech (TTS) training applications.

### Example usage

VoxPopuli contains labelled data for 18 languages. To load a specific language pass its name as a config name:

```python
from datasets import load_dataset

voxpopuli_croatian = load_dataset("facebook/voxpopuli", "hr")
```

To load all the languages in a single dataset use "multilang" config name:

```python
voxpopuli_all = load_dataset("facebook/voxpopuli", "multilang")
```

To load a specific set of languages, use "multilang" config name and pass a list of required languages to `languages` parameter:

```python
voxpopuli_slavic = load_dataset("facebook/voxpopuli", "multilang", languages=["hr", "sk", "sl", "cs", "pl"])
```

To load accented English data, use "en_accented" config name:

```python
voxpopuli_accented = load_dataset("facebook/voxpopuli", "en_accented")
```

**Note that L2 English subset contains only `test` split.**


### Supported Tasks and Leaderboards

* automatic-speech-recognition: The dataset can be used to train a model for Automatic Speech Recognition (ASR). The model is presented with an audio file and asked to transcribe the audio file to written text. The most common evaluation metric is the word error rate (WER).

Accented English subset can also be used for research in ASR for accented speech (15 L2 accents)

### Languages

VoxPopuli contains labelled (transcribed) data for 18 languages:

| Language | Code | Transcribed Hours | Transcribed Speakers | Transcribed Tokens |
|:---:|:---:|:---:|:---:|:---:|
| English | En | 543 | 1313 | 4.8M |
| German | De | 282 | 531 | 2.3M |
| French | Fr | 211 | 534 | 2.1M |
| Spanish | Es | 166 | 305 | 1.6M |
| Polish | Pl | 111 | 282 | 802K |
| Italian | It | 91 | 306 | 757K |
| Romanian | Ro | 89 | 164 | 739K |
| Hungarian | Hu | 63 | 143 | 431K |
| Czech | Cs | 62 | 138 | 461K |
| Dutch | Nl | 53 | 221 | 488K |
| Finnish | Fi | 27 | 84 | 160K |
| Croatian | Hr | 43 | 83 | 337K |
| Slovak | Sk | 35 | 96 | 270K |
| Slovene | Sl | 10 | 45 | 76K |
| Estonian | Et | 3 | 29 | 18K |
| Lithuanian | Lt | 2 | 21 | 10K |
| Total | | 1791 | 4295 | 15M |


Accented speech transcribed data has 15 various L2 accents:

| Accent | Code | Transcribed Hours | Transcribed Speakers |
|:---:|:---:|:---:|:---:|
| Dutch | en_nl | 3.52 | 45 |
| German | en_de | 3.52 | 84 |
| Czech | en_cs | 3.30 | 26 |
| Polish | en_pl | 3.23 | 33 |
| French | en_fr | 2.56 | 27 |
| Hungarian | en_hu | 2.33 | 23 |
| Finnish | en_fi | 2.18 | 20 |
| Romanian | en_ro | 1.85 | 27 |
| Slovak | en_sk | 1.46 | 17 |
| Spanish | en_es | 1.42 | 18 |
| Italian | en_it | 1.11 | 15 |
| Estonian | en_et | 1.08 | 6 |
| Lithuanian | en_lt | 0.65 | 7 |
| Croatian | en_hr | 0.42 | 9 |
| Slovene | en_sl | 0.25 | 7 |

## Dataset Structure

### Data Instances

```python
{
  'audio_id': '20180206-0900-PLENARY-15-hr_20180206-16:10:06_5',
  'language': 11,  # "hr"
  'audio': {
    'path': '/home/polina/.cache/huggingface/datasets/downloads/extracted/44aedc80bb053f67f957a5f68e23509e9b181cc9e30c8030f110daaedf9c510e/train_part_0/20180206-0900-PLENARY-15-hr_20180206-16:10:06_5.wav',
    'array': array([-0.01434326, -0.01055908,  0.00106812, ...,  0.00646973], dtype=float32),
    'sampling_rate': 16000
  },
  'raw_text': '',
  'normalized_text': 'poast genitalnog sakaenja ena u europi tek je jedna od manifestacija takve tetne politike.',
  'gender': 'female',
  'speaker_id': '119431',
  'is_gold_transcript': True,
  'accent': 'None'
}
```

### Data Fields

* `audio_id` (string) - id of audio segment
* `language` (datasets.ClassLabel) - numerical id of audio segment 
* `audio` (datasets.Audio) - a dictionary containing the path to the audio, the decoded audio array, and the sampling rate. In non-streaming mode (default), the path points to the locally extracted audio. In streaming mode, the path is the relative path of an audio inside its archive (as files are not downloaded and extracted locally).
* `raw_text` (string) - original (orthographic) audio segment text
* `normalized_text` (string) - normalized audio segment transcription
* `gender` (string) - gender of speaker
* `speaker_id` (string) - id of speaker
* `is_gold_transcript` (bool) - ?
* `accent` (string) - type of accent, for example "en_lt", if applicable, else "None".

### Data Splits

All configs (languages) except for accented English contain data in three splits: train, validation and test. Accented English `en_accented` config contains only test split.

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

The raw data is collected from 2009-2020 [European Parliament event recordings](https://multimedia.europarl.europa.eu/en/home)

#### Initial Data Collection and Normalization

The VoxPopuli transcribed set comes from aligning  the full-event source speech audio with the transcripts for plenary sessions. Official timestamps
are available for locating speeches by speaker in the full session, but they are frequently inaccurate, resulting in truncation of the speech or mixture
of fragments from the preceding or the succeeding speeches. To calibrate the original timestamps,
we perform speaker diarization (SD) on the full-session audio using pyannote.audio (Bredin et al.2020) and adopt the nearest SD timestamps (by L1 distance to the original ones) instead for segmentation. 
Full-session audios are segmented into speech paragraphs by speaker, each of which has a transcript available.

The speech paragraphs have an average duration of 197 seconds, which leads to significant. We hence further segment these paragraphs into utterances with a
maximum duration of 20 seconds. We leverage speech recognition (ASR) systems to force-align speech paragraphs to the given transcripts.
The ASR systems are TDS models (Hannun et al., 2019) trained with ASG criterion (Collobert et al., 2016) on audio tracks from in-house deidentified video data.

The resulting utterance segments may have incorrect transcriptions due to incomplete raw transcripts or inaccurate ASR force-alignment. 
We use the predictions from the same ASR systems as references and filter the candidate segments by a maximum threshold of 20% character error rate(CER).

#### Who are the source language producers?

Speakers are participants of the European Parliament events, many of them are EU officials.

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

Gender speakers distribution is imbalanced, percentage of female speakers is mostly lower than 50% across languages, with the minimum of 15% for the Lithuanian language data.

VoxPopuli includes all available speeches from the 2009-2020 EP events without any selections on the topics or speakers.
The speech contents represent the standpoints of the speakers in the EP events, many of which are EU officials.


### Other Known Limitations


## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

The dataset is distributet under CC0 license, see also [European Parliament's legal notice](https://www.europarl.europa.eu/legal-notice/en/) for the raw data.

### Citation Information

Please cite this paper:

```bibtex
@inproceedings{wang-etal-2021-voxpopuli,
    title = "{V}ox{P}opuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation",
    author = "Wang, Changhan  and
      Riviere, Morgane  and
      Lee, Ann  and
      Wu, Anne  and
      Talnikar, Chaitanya  and
      Haziza, Daniel  and
      Williamson, Mary  and
      Pino, Juan  and
      Dupoux, Emmanuel",
    booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.acl-long.80",
    pages = "993--1003",
}
```

### Contributions

Thanks to [@polinaeterna](https://github.com/polinaeterna) for adding this dataset.